Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1820–1825. doi: 10.1128/aem.63.5.1820-1825.1997

Production of 5,8,11-Eicosatrienoic Acid (Mead Acid) by a (Delta)6 Desaturation Activity-Enhanced Mutant Derived from a (Delta)12 Desaturase-Defective Mutant of an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4

H Kawashima, M Nishihara, Y Hirano, N Kamada, K Akimoto, K Konishi, S Shimizu
PMCID: PMC1389153  PMID: 16535598

Abstract

Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter).

Full Text

The Full Text of this article is available as a PDF (276.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner R. R., Peluffo R. O. Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. J Biol Chem. 1966 Nov 25;241(22):5213–5219. [PubMed] [Google Scholar]
  2. Cleland K. A., James M. J., Neumann M. A., Gibson R. A., Cleland L. G. Differences in fatty acid composition of immature and mature articular cartilage in humans and sheep. Lipids. 1995 Oct;30(10):949–953. doi: 10.1007/BF02537487. [DOI] [PubMed] [Google Scholar]
  3. Cleland L. G., James M. J., Proudman S. M., Neumann M. A., Gibson R. A. Inhibition of human neutrophil leukotriene B4 synthesis in essential fatty acid deficiency: role of leukotriene A hydrolase. Lipids. 1994 Mar;29(3):151–155. doi: 10.1007/BF02536722. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. FULCO A. J., MEAD J. F. Metabolism of essential fatty acids. VIII. Origin of 5,8,11-eicosatrienoic acid in the fat-deficient rat. J Biol Chem. 1959 Jun;234(6):1411–1416. [PubMed] [Google Scholar]
  6. Hammarström S. Conversion of 5,8,11-eicosatrienoic acid to leukotrienes C3 and D3. J Biol Chem. 1981 Mar 10;256(5):2275–2279. [PubMed] [Google Scholar]
  7. Hornstra G., van Houwelingen A. C., Simonis M., Gerrard J. M. Fatty acid composition of umbilical arteries and veins: possible implications for the fetal EFA-status. Lipids. 1989 Jun;24(6):511–517. doi: 10.1007/BF02535131. [DOI] [PubMed] [Google Scholar]
  8. James M. J., Gibson R. A., Neumann M. A., Cleland L. G. Effect of dietary supplementation with n-9 eicosatrienoic acid on leukotriene B4 synthesis in rats: a novel approach to inhibition of eicosanoid synthesis. J Exp Med. 1993 Dec 1;178(6):2261–2265. doi: 10.1084/jem.178.6.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jareonkitmongkol S., Kawashima H., Shirasaka N., Shimizu S., Yamada H. Production of Dihomo-gamma-Linolenic Acid by a Delta5-Desaturase-Defective Mutant of Mortierella alpina 1S-4. Appl Environ Microbiol. 1992 Jul;58(7):2196–2200. doi: 10.1128/aem.58.7.2196-2200.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jareonkitmongkol S., Sakuradani E., Shimizu S. A Novel Delta5-Desaturase-Defective Mutant of Mortierella alpina 1S-4 and Its Dihomo-gamma-Linolenic Acid Productivity. Appl Environ Microbiol. 1993 Dec;59(12):4300–4304. doi: 10.1128/aem.59.12.4300-4304.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jareonkitmongkol S., Shimizu S., Yamada H. Occurrence of two nonmethylene-interrupted delta 5 polyunsaturated fatty acids in a delta 6-desaturase-defective mutant of the fungus Mortierella alpina 1S-4. Biochim Biophys Acta. 1993 Apr 7;1167(2):137–141. doi: 10.1016/0005-2760(93)90153-z. [DOI] [PubMed] [Google Scholar]
  12. Kawashima H., Akimoto K., Shirasaka N., Shimizu S. Inhibitory effects of alkyl gallate and its derivatives on fatty acid desaturation. Biochim Biophys Acta. 1996 Jan 5;1299(1):34–38. doi: 10.1016/0005-2760(95)00183-2. [DOI] [PubMed] [Google Scholar]
  13. Lagarde M., Burtin M., Rigaud M., Sprecher H., Dechavanne M., Renaud S. Prostaglandin E2-like activity of 20:3n-9 platelet lipoxygenase end-product. FEBS Lett. 1985 Feb 11;181(1):53–56. doi: 10.1016/0014-5793(85)81112-1. [DOI] [PubMed] [Google Scholar]
  14. MEAD J. F., SLATON W. H., Jr Metabolism of essential fatty acids. III. Isolation of 5,8,11-eicosatrienoic acid from fat-deficient rats. J Biol Chem. 1956 Apr;219(2):705–709. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES