Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1852–1860. doi: 10.1128/aem.63.5.1852-1860.1997

Metabolic and Genotypic Fingerprinting of Fluorescent Pseudomonads Associated with the Douglas Fir-Laccaria bicolor Mycorrhizosphere

P Frey, P Frey-Klett, J Garbaye, O Berge, T Heulin
PMCID: PMC1389155  PMID: 16535600

Abstract

A collection of 300 isolates of fluorescent pseudomonads was established from Douglas fir-Laccaria bicolor mycorrhizas and mycorrhizosphere and from adjacent bulk soil. These isolates were first phenotypically characterized with the Biolog method. Taxonomic identification assigned 90% of the isolates to the different biovars of Pseudomonas fluorescens, with inverted frequencies of biovars V and I from the bulk soil to the mycorrhizas, suggesting that the mycorrhizas exert a selective stimulation of the P. fluorescens bv. I and a counterselection of the P. fluorescens bv. V present in the soil. Multivariate analyses of the carbon source utilization data led to the definition of homogenous metabolic groups and to the identification of the most discriminating substrates for each group. The isolates from the mycorrhizosphere and from the mycorrhizas seem to preferentially utilize carbohydrates, in particular trehalose, which is the most abundant carbohydrate accumulated in the mycelium of L. bicolor. The results suggest that L. bicolor exerts a trehalose-mediated selection on the fluorescent pseudomonads present in the vicinity of the mycorrhizas. Isolates of P. fluorescens from the mycorrhizosphere and mycorrhizas were then genotypically characterized by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes and enterobacterial repetitive intergenic consensus-PCR DNA fingerprinting. Both methods revealed a high genetic polymorphism within the population studied, which was well correlated with the phenotypic characterization.

Full Text

The Full Text of this article is available as a PDF (788.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Frey P., Smith J. J., Albar L., Prior P., Saddler G. S., Trigalet-Demery D., Trigalet A. Bacteriocin Typing of Burkholderia (Pseudomonas) solanacearum Race 1 of the French West Indies and Correlation with Genomic Variation of the Pathogen. Appl Environ Microbiol. 1996 Feb;62(2):473–479. doi: 10.1128/aem.62.2.473-479.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Grayston Susan J., Campbell Colin D. Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol. 1996 Nov-Dec;16(11_12):1031–1038. doi: 10.1093/treephys/16.11-12.1031. [DOI] [PubMed] [Google Scholar]
  3. Gurtler V., Wilson V. A., Mayall B. C. Classification of medically important clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA. J Gen Microbiol. 1991 Nov;137(11):2673–2679. doi: 10.1099/00221287-137-11-2673. [DOI] [PubMed] [Google Scholar]
  4. Hulton C. S., Higgins C. F., Sharp P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol. 1991 Apr;5(4):825–834. doi: 10.1111/j.1365-2958.1991.tb00755.x. [DOI] [PubMed] [Google Scholar]
  5. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  6. Laguerre G., Allard M. R., Revoy F., Amarger N. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. Appl Environ Microbiol. 1994 Jan;60(1):56–63. doi: 10.1128/aem.60.1.56-63.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laguerre G., Rigottier-Gois L., Lemanceau P. Fluorescent Pseudomonas species categorized by using polymerase chain reaction (PCR)/restriction fragment analysis of 16S rDNA. Mol Ecol. 1994 Oct;3(5):479–487. doi: 10.1111/j.1365-294x.1994.tb00126.x. [DOI] [PubMed] [Google Scholar]
  8. Latour X., Corberand T., Laguerre G., Allard F., Lemanceau P. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol. 1996 Jul;62(7):2449–2456. doi: 10.1128/aem.62.7.2449-2456.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J., Alabouvette C. Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads. Appl Environ Microbiol. 1995 Mar;61(3):1004–1012. doi: 10.1128/aem.61.3.1004-1012.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994 Jul;60(7):2286–2295. doi: 10.1128/aem.60.7.2286-2295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mavingui P., Laguerre G., Berge O., Heulin T. Genetic and Phenotypic Diversity of Bacillus polymyxa in Soil and in the Wheat Rhizosphere. Appl Environ Microbiol. 1992 Jun;58(6):1894–1903. doi: 10.1128/aem.58.6.1894-1903.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rovira A. D. Interactions between plant roots and soil microorganisms. Annu Rev Microbiol. 1965;19:241–266. doi: 10.1146/annurev.mi.19.100165.001325. [DOI] [PubMed] [Google Scholar]
  13. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  14. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991 Jan;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES