Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1878–1882. doi: 10.1128/aem.63.5.1878-1882.1997

Denitrifying Bacteria in the Earthworm Gastrointestinal Tract and In Vivo Emission of Nitrous Oxide (N(inf2)O) by Earthworms

G R Karsten, H L Drake
PMCID: PMC1389158  PMID: 16535603

Abstract

Earthworms (Lumbricus rubellus and Octolasium lacteum) and gut homogenates did not produce CH(inf4), and methanogens were not readily culturable from gut material. In contrast, the numbers of culturable denitrifiers averaged 7 x 10(sup7) and 9 x 10(sup6) per g (dry weight) of gut material for L. rubellus and O. lacteum, respectively; these values were 256- and 35-fold larger than the numbers of culturable denitrifiers in the soil from which the earthworms were obtained. Anaerobically incubated earthworm gut homogenates supplemented with nitrate produced N(inf2)O at rates exceeding that of soil homogenates. Furthermore, living earthworms emitted N(inf2)O under aerobic conditions, and N(inf2)O emission was stimulated by acetylene. For earthworms collected from a mildly acidic (pH 6) beech forest soil, the rates of N(inf2)O emission for earthworms and soil averaged 884 and 2 pmol per h per g (fresh weight), respectively. In contrast, for earthworms collected from a more acidic (pH 4.6) oak-beech forest soil, N(inf2)O emission by earthworms and soil averaged 145 and 45 pmol per h per g (fresh weight), respectively. Based on the extrapolation of this data, earthworms accounted for an estimated 16 and 0.25% of the total N(inf2)O produced at the stand level of these beech and oak-beech forest soils, respectively.

Full Text

The Full Text of this article is available as a PDF (306.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauman A., Kane M. D., Labat M., Breznak J. A. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science. 1992 Sep 4;257(5075):1384–1387. doi: 10.1126/science.257.5075.1384. [DOI] [PubMed] [Google Scholar]
  2. Brune A., Emerson D., Breznak J. A. The Termite Gut Microflora as an Oxygen Sink: Microelectrode Determination of Oxygen and pH Gradients in Guts of Lower and Higher Termites. Appl Environ Microbiol. 1995 Jul;61(7):2681–2687. doi: 10.1128/aem.61.7.2681-2687.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gijzen H. J., van der Drift C., Barugahare M., Op den Camp H. J. Effect of Host Diet and Hindgut Microbial Composition on Cellulolytic Activity in the Hindgut of the American Cockroach, Periplaneta americana. Appl Environ Microbiol. 1994 Jun;60(6):1822–1826. doi: 10.1128/aem.60.6.1822-1826.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hackstein J. H., Stumm C. K. Methane production in terrestrial arthropods. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5441–5445. doi: 10.1073/pnas.91.12.5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hochstein L. I., Betlach M., Kritikos G. The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans. Arch Microbiol. 1984 Jan;137(1):74–78. doi: 10.1007/BF00425811. [DOI] [PubMed] [Google Scholar]
  6. KHAMBATA S. R., BHAT J. V. A contribution to the study of the intestinal microflora of Indian earthworms. Arch Mikrobiol. 1957;28(1):69–80. doi: 10.1007/BF00411311. [DOI] [PubMed] [Google Scholar]
  7. KHAMBATA S. R., BHAT J. V. Studies on a new oxalate-decomposing bacterium, Pseudomonas oxalaticus. J Bacteriol. 1953 Nov;66(5):505–507. doi: 10.1128/jb.66.5.505-507.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kane M. D., Breznak J. A. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl Environ Microbiol. 1991 Sep;57(9):2628–2634. doi: 10.1128/aem.57.9.2628-2634.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karsten G. R., Drake H. L. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol. 1995 Mar;61(3):1039–1044. doi: 10.1128/aem.61.3.1039-1044.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaspar H. F., Tiedje J. M. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Appl Environ Microbiol. 1981 Mar;41(3):705–709. doi: 10.1128/aem.41.3.705-709.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thomsen J. K., Geest T., Cox R. P. Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans. Appl Environ Microbiol. 1994 Feb;60(2):536–541. doi: 10.1128/aem.60.2.536-541.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wagner C., Griesshammer A., Drake H. L. Acetogenic capacities and the anaerobic turnover of carbon in a kansas prairie soil. Appl Environ Microbiol. 1996 Feb;62(2):494–500. doi: 10.1128/aem.62.2.494-500.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES