Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):2007–2015. doi: 10.1128/aem.63.5.2007-2015.1997

Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52

P D Fiorella, J C Spain
PMCID: PMC1389165  PMID: 16535610

Abstract

Pseudomonas pseudoalcaligenes JS52 grows on nitrobenzene via partial reduction of the nitro group and enzymatic rearrangement of the resultant hydroxylamine. Cells and cell extracts of nitrobenzene-grown JS52 catalyzed the transient formation of 4-hydroxylamino-2,6-dinitrotoluene (4HADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and four previously unidentified metabolites from 2,4,6-trinitrotoluene (TNT). Two of the novel metabolites were identified by liquid chromatography/mass spectrometry and (sup1)H-nuclear magnetic resonance spectroscopy as 2,4-dihydroxylamino-6-nitrotoluene (DHANT) and 2-hydroxylamino-4-amino-6-nitrotoluene (2HA4ANT). A polar yellow metabolite also accumulated during transformation of TNT by cells and cell extracts. Under anaerobic conditions, extracts of strain JS52 did not catalyze the production of the yellow metabolite or release nitrite from TNT; moreover, DHANT and 2HA4ANT accumulated under anaerobic conditions, which indicated that their further metabolism was oxygen dependent. Small amounts of nitrite were released during transformation of TNT by strain JS52. Sustained transformation of TNT by cells required nitrobenzene, which indicated that TNT transformation does not provide energy. Transformation of TNT catalyzed by enzymes in cell extracts required NADPH. Transformation experiments with (sup14)C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with cells. Nitrobenzene nitroreductase purified from strain JS52 transformed TNT to DHANT via 4HADNT, which indicated that the nitroreductase could catalyze the first two steps in the transformation of TNT. The unusual ability of the nitrobenzene nitroreductase to catalyze the stoichiometric reduction of aromatic nitro compounds to the corresponding hydroxylamine provides the basis for the novel pathway for metabolism of TNT.

Full Text

The Full Text of this article is available as a PDF (264.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez M. A., Kitts C. L., Botsford J. L., Unkefer P. J. Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction. Can J Microbiol. 1995 Nov;41(11):984–991. doi: 10.1139/m95-137. [DOI] [PubMed] [Google Scholar]
  2. Boopathy R., Kulpa C. F. Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol. 1994 Apr;40(4):273–278. doi: 10.1139/m94-044. [DOI] [PubMed] [Google Scholar]
  3. Bradley P. M., Chapelle F. H., Landmeyer J. E., Schumacher J. G. Microbial transformation of nitroaromatics in surface soils and aquifer materials. Appl Environ Microbiol. 1994 Jun;60(6):2170–2175. doi: 10.1128/aem.60.6.2170-2175.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breitung J., Bruns-Nagel D., Steinbach K., Kaminski L., Gemsa D., von Löw E. Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol. 1996 Feb;44(6):795–800. doi: 10.1007/BF00178621. [DOI] [PubMed] [Google Scholar]
  5. Bryant C., DeLuca M. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem. 1991 Mar 5;266(7):4119–4125. [PubMed] [Google Scholar]
  6. Carpenter D. F., McCormick N. G., Cornell J. H., Kaplan A. M. Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl Environ Microbiol. 1978 May;35(5):949–954. doi: 10.1128/aem.35.5.949-954.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Channon H. J., Mills G. T., Williams R. T. The metabolism of 2:4:6-trinitrotoluene (alpha-T.N.T.). Biochem J. 1944;38(1):70–85. doi: 10.1042/bj0380070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duque E., Haidour A., Godoy F., Ramos J. L. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol. 1993 Apr;175(8):2278–2283. doi: 10.1128/jb.175.8.2278-2283.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Funk S. B., Roberts D. J., Crawford D. L., Crawford R. L. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol. 1993 Jul;59(7):2171–2177. doi: 10.1128/aem.59.7.2171-2177.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilcrease P. C., Murphy V. G. Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions. Appl Environ Microbiol. 1995 Dec;61(12):4209–4214. doi: 10.1128/aem.61.12.4209-4214.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gorontzy T., Drzyzga O., Kahl M. W., Bruns-Nagel D., Breitung J., von Loew E., Blotevogel K. H. Microbial degradation of explosives and related compounds. Crit Rev Microbiol. 1994;20(4):265–284. doi: 10.3109/10408419409113559. [DOI] [PubMed] [Google Scholar]
  12. Groenewegen P. E., Breeuwer P., van Helvoort J. M., Langenhoff A. A., de Vries F. P., de Bont J. A. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol. 1992 Aug;138(Pt 8):1599–1605. doi: 10.1099/00221287-138-8-1599. [DOI] [PubMed] [Google Scholar]
  13. Haigler B. E., Spain J. C. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl Environ Microbiol. 1993 Jul;59(7):2239–2243. doi: 10.1128/aem.59.7.2239-2243.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haigler B. E., Wallace W. H., Spain J. C. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl Environ Microbiol. 1994 Sep;60(9):3466–3469. doi: 10.1128/aem.60.9.3466-3469.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Higson F. K. Microbial degradation of nitroaromatic compounds. Adv Appl Microbiol. 1992;37:1–19. doi: 10.1016/s0065-2164(08)70250-8. [DOI] [PubMed] [Google Scholar]
  16. Kaplan D. L., Kaplan A. M. Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol. 1982 Sep;44(3):757–760. doi: 10.1128/aem.44.3.757-760.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewis T. A., Goszczynski S., Crawford R. L., Korus R. A., Admassu W. Products of Anaerobic 2,4,6-Trinitrotoluene (TNT) Transformation by Clostridium bifermentans. Appl Environ Microbiol. 1996 Dec;62(12):4669–4674. doi: 10.1128/aem.62.12.4669-4674.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu Y. Y., Lu A. Y., Stearns R. A., Chiu S. H. In vivo covalent binding of [14C]trinitrotoluene to proteins in the rat. Chem Biol Interact. 1992 Mar;82(1):1–19. doi: 10.1016/0009-2797(92)90010-i. [DOI] [PubMed] [Google Scholar]
  19. Liu Y. Y., Yao M., Fang J. L., Wang Y. W. Monitoring human risk and exposure to trinitrotoluene (TNT) using haemoglobin adducts as biomarkers. Toxicol Lett. 1995 May;77(1-3):281–287. doi: 10.1016/0378-4274(95)03308-4. [DOI] [PubMed] [Google Scholar]
  20. McCormick N. G., Feeherry F. E., Levinson H. S. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol. 1976 Jun;31(6):949–958. doi: 10.1128/aem.31.6.949-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michels J., Gottschalk G. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol. 1994 Jan;60(1):187–194. doi: 10.1128/aem.60.1.187-194.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Narai N., Kitamura S., Tatsumi K. A comparative study on 1-nitropyrene and nitrofurazone reductases in Escherichia coli. J Pharmacobiodyn. 1984 Jun;7(6):407–413. doi: 10.1248/bpb1978.7.407. [DOI] [PubMed] [Google Scholar]
  23. Nishino S. F., Spain J. C. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 1993 Aug;59(8):2520–2525. doi: 10.1128/aem.59.8.2520-2525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peterson F. J., Mason R. P., Hovsepian J., Holtzman J. L. Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem. 1979 May 25;254(10):4009–4014. [PubMed] [Google Scholar]
  25. Preuss A., Fimpel J., Diekert G. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol. 1993;159(4):345–353. doi: 10.1007/BF00290917. [DOI] [PubMed] [Google Scholar]
  26. Rieble S., Joshi D. K., Gold M. H. Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1994 Nov 30;205(1):298–304. doi: 10.1006/bbrc.1994.2664. [DOI] [PubMed] [Google Scholar]
  27. Somerville C. C., Nishino S. F., Spain J. C. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol. 1995 Jul;177(13):3837–3842. doi: 10.1128/jb.177.13.3837-3842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spain J. C., Nishino S. F. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol. 1987 May;53(5):1010–1019. doi: 10.1128/aem.53.5.1010-1019.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spanggord R. J., Spain J. C., Nishino S. F., Mortelmans K. E. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol. 1991 Nov;57(11):3200–3205. doi: 10.1128/aem.57.11.3200-3205.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vanderberg L. A., Perry J. J., Unkefer P. J. Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol. 1995 Oct;43(5):937–945. doi: 10.1007/BF02431931. [DOI] [PubMed] [Google Scholar]
  31. Vorbeck C., Lenke H., Fischer P., Knackmuss H. J. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol. 1994 Feb;176(3):932–934. doi: 10.1128/jb.176.3.932-934.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Won W. D., DiSalvo L. H., Ng J. Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol. 1976 Apr;31(4):576–580. doi: 10.1128/aem.31.4.576-580.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES