Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2218–2223. doi: 10.1128/aem.63.6.2218-2223.1997

Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth

Y Liu, B E Tabashnik
PMCID: PMC1389178  PMID: 16535623

Abstract

Laboratory selection increased resistance to the Bacillus thuringiensis toxin Cry1C in a strain of diamondback moth (Plutella xylostella). The selected strain was derived from a field population that had evolved high levels of resistance to Bacillus thuringiensis subsp. kurstaki and moderate resistance to Cry1C. Relative to the responses of a susceptible strain of diamondback moth, the resistance to Cry1C of the selected strain increased to 62-fold after six generations of selection. The realized heritability of resistance was 0.10. Analysis of F(inf1) hybrid progeny from reciprocal crosses between the selected strain and a susceptible strain showed that resistance to Cry1C was autosomally inherited. The dominance of resistance to Cry1C depended on the concentration; inheritance was increasingly dominant as the concentration decreased. Responses of progeny from single-pair families showed that resistance to Cry1C and resistance to Cry1Ab were inherited independently, which enhances opportunities for managing resistance. However, compared with projections based on previously reported recessive inheritance of resistance to Cry1A toxins, the potentially dominant inheritance of resistance to Cry1C observed here could accelerate evolution of resistance.

Full Text

The Full Text of this article is available as a PDF (132.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguet D., Prout M., Raymond M. Dominance of insecticide resistance presents a plastic response. Genetics. 1996 May;143(1):407–416. doi: 10.1093/genetics/143.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Escriche B., Tabashnik B., Finson N., Ferré J. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun. 1995 Jul 17;212(2):388–395. doi: 10.1006/bbrc.1995.1982. [DOI] [PubMed] [Google Scholar]
  3. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hama H., Sakurai T., Kasuya Y., Fujiki M., Masaki T., Goto K. Action of endothelin-1 on rat astrocytes through the ETB receptor. Biochem Biophys Res Commun. 1992 Jul 15;186(1):355–362. doi: 10.1016/s0006-291x(05)80815-0. [DOI] [PubMed] [Google Scholar]
  6. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mani G. S. Evolution of resistance in the presence of two insecticides. Genetics. 1985 Apr;109(4):761–783. doi: 10.1093/genetics/109.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
  9. McGaughey W. H., Whalon M. E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science. 1992 Nov 27;258(5087):1451–1455. doi: 10.1126/science.258.5087.1451. [DOI] [PubMed] [Google Scholar]
  10. Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1997.0086. [DOI] [PMC free article] [Google Scholar]
  12. Stone B. F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull World Health Organ. 1968;38(2):325–326. [PMC free article] [PubMed] [Google Scholar]
  13. Tabashnik B. E., Finson N., Groeters F. R., Moar W. J., Johnson M. W., Luo K., Adang M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tabashnik B. E., Liu Y. B., Finson N., Masson L., Heckel D. G. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1640–1644. doi: 10.1073/pnas.94.5.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tabashnik B. E. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol. 1989 Oct;82(5):1263–1269. doi: 10.1093/jee/82.5.1263. [DOI] [PubMed] [Google Scholar]
  17. Tang J. D., Shelton A. M., Van Rie J., De Roeck S., Moar W. J., Roush R. T., Peferoen M. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1996 Feb;62(2):564–569. doi: 10.1128/aem.62.2.564-569.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES