Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2287–2292. doi: 10.1128/aem.63.6.2287-2292.1997

Induction by (alpha)-L-Arabinose and (alpha)-L-Rhamnose of Endopolygalacturonase Gene Expression in Colletotrichum lindemuthianum

V Hugouvieux, S Centis, C Lafitte, M Esquerre-Tugaye
PMCID: PMC1389181  PMID: 16535626

Abstract

The production of endopolygalacturonase (endoPG) by Colletotrichum lindemuthianum, a fungal pathogen causing anthracnose on bean seedlings, was enhanced when the fungus was grown in liquid medium with L-arabinose or L-rhamnose as the sole carbon source. These two neutral sugars are present in plant cell wall pectic polysaccharides. The endolytic nature of the enzyme was demonstrated by its specific interaction with the polygalacturonase-inhibiting protein of the host plant as well as by sugar analysis of the products released from its action on oligogalacturonides. Additional characterization of the protein was achieved with an antiserum raised against the pure endoPG of the fungus. Induction by arabinose and rhamnose was more prolonged and led to a level of enzyme activity at least five times higher than that on pectin. Northern blot experiments showed that this effect was correlated to the induction of a 1.6-kb transcript. A dose-response study indicated that the endoPG transcript level was already increased at a concentration of each sugar as low as 2.75 mM in the medium and was maximum at 55 mM arabinose and 28 mM rhamnose. Glucose, the main plant cell wall sugar residue which is also present in the apoplast, prevented endoPG gene expression, partially when added to pectin at concentrations ranging from 5 to 110 mM and totally when added at 55 mM to arabinose. Inhibition by glucose of the rhamnose-induced endoPG was correlated to nonuptake of rhamnose. This is the first report that arabinose and rhamnose stimulate endoPG gene expression in a fungus. The possible involvement of these various sugars on endoPG gene expression during pathogenesis is discussed.

Full Text

The Full Text of this article is available as a PDF (417.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar G., Huitrón C. Conidial and mycelial-bound exo-pectinase of Aspergillus sp. FEMS Microbiol Lett. 1993 Apr 1;108(2):127–132. doi: 10.1111/j.1574-6968.1993.tb06087.x. [DOI] [PubMed] [Google Scholar]
  2. Albersheim P., Anderson A. J. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1815–1819. doi: 10.1073/pnas.68.8.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boudart G., Dechamp-Guillaume G., Lafitte C., Ricart G., Barthe J. P., Mazau D., Esquerré-Tugayé M. T. Elicitors and suppressors of hydroxyproline-rich glycoprotein accumulation are solubilized from plant cell walls by endopolygalacturonase. Eur J Biochem. 1995 Sep 1;232(2):449–457. doi: 10.1111/j.1432-1033.1995.tb20830.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bussink H. J., Buxton F. P., Fraaye B. A., de Graaff L. H., Visser J. The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur J Biochem. 1992 Aug 15;208(1):83–90. doi: 10.1111/j.1432-1033.1992.tb17161.x. [DOI] [PubMed] [Google Scholar]
  6. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  7. Cary J. W., Brown R., Cleveland T. E., Whitehead M., Dean R. A. Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus. Gene. 1995 Feb 3;153(1):129–133. doi: 10.1016/0378-1119(94)00749-i. [DOI] [PubMed] [Google Scholar]
  8. Centis S., Dumas B., Fournier J., Marolda M., Esquerré-Tugayé M. T. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene. 1996 Apr 17;170(1):125–129. doi: 10.1016/0378-1119(95)00867-5. [DOI] [PubMed] [Google Scholar]
  9. Cervone F., De Lorenzo G., Degrà L., Salvi G., Bergami M. Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L. Plant Physiol. 1987 Nov;85(3):631–637. doi: 10.1104/pp.85.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Darvill A., Augur C., Bergmann C., Carlson R. W., Cheong J. J., Eberhard S., Hahn M. G., Ló V. M., Marfà V., Meyer B. Oligosaccharins--oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology. 1992 Jun;2(3):181–198. doi: 10.1093/glycob/2.3.181. [DOI] [PubMed] [Google Scholar]
  11. De Lorenzo G., Cervone F., Bellincampi D., Caprari C., Clark A. J., Desiderio A., Devoto A., Forrest R., Leckie F., Nuss L. Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochem Soc Trans. 1994 May;22(2):394–397. doi: 10.1042/bst0220394. [DOI] [PubMed] [Google Scholar]
  12. Dean R. A., Timberlake W. E. Regulation of the Aspergillus nidulans pectate lyase gene (pelA). Plant Cell. 1989 Mar;1(3):275–284. doi: 10.1105/tpc.1.3.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. English P. D., Maglothin A., Keegstra K., Albersheim P. A Cell Wall-degrading Endopolygalacturonase Secreted by Colletotrichum lindemuthianum. Plant Physiol. 1972 Mar;49(3):293–298. doi: 10.1104/pp.49.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  15. González-Candelas L., Kolattukudy P. E. Isolation and analysis of a novel inducible pectate lyase gene from the phytopathogenic fungus Fusarium solani f. sp. pisi (Nectria haematococca, mating population VI). J Bacteriol. 1992 Oct;174(20):6343–6349. doi: 10.1128/jb.174.20.6343-6349.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gysler C., Harmsen J. A., Kester H. C., Visser J., Heim J. Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger. Gene. 1990 Apr 30;89(1):101–108. doi: 10.1016/0378-1119(90)90211-9. [DOI] [PubMed] [Google Scholar]
  17. Haffner M. H., Chin M. B., Lane B. G. Wheat embryo ribonucleates. XII. Formal characterization of terminal and penultimate nucleoside residues at the 5'-ends of "capped" RNA from imbibing wheat embryos. Can J Biochem. 1978 Jul;56(7):729–733. doi: 10.1139/o78-109. [DOI] [PubMed] [Google Scholar]
  18. Hotchkiss A. T., Jr, Hicks K. B. Analysis of oligogalacturonic acids with 50 or fewer residues by high-performance anion-exchange chromatography and pulsed amperometric detection. Anal Biochem. 1990 Feb 1;184(2):200–206. doi: 10.1016/0003-2697(90)90669-z. [DOI] [PubMed] [Google Scholar]
  19. Kitamoto N., Kimura T., Kito Y., Ohmiya K., Tsukagoshi N. Structural features of a polygalacturonase gene cloned from Aspergillus oryzae KBN616. FEMS Microbiol Lett. 1993 Jul 15;111(1):37–41. doi: 10.1111/j.1574-6968.1993.tb06358.x. [DOI] [PubMed] [Google Scholar]
  20. Kulmburg P., Mathieu M., Dowzer C., Kelly J., Felenbok B. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol. 1993 Mar;7(6):847–857. doi: 10.1111/j.1365-2958.1993.tb01175.x. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. MacKenzie D. A., Jeenes D. J., Belshaw N. J., Archer D. B. Regulation of secreted protein production by filamentous fungi: recent developments and perspectives. J Gen Microbiol. 1993 Oct;139(10):2295–2307. doi: 10.1099/00221287-139-10-2295. [DOI] [PubMed] [Google Scholar]
  23. Mutter M., Colquhoun I. J., Schols H. A., Beldman G., Voragen A. G. Rhamnogalacturonase B from Aspergillus aculeatus is a rhamnogalacturonan alpha-L-rhamnopyranosyl-(1-->4)-alpha-D-galactopyranosyluronide lyase. Plant Physiol. 1996 Jan;110(1):73–77. doi: 10.1104/pp.110.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reymond P., Deléage G., Rascle C., Fèvre M. Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene. 1994 Sep 2;146(2):233–237. doi: 10.1016/0378-1119(94)90298-4. [DOI] [PubMed] [Google Scholar]
  25. Ruttkowski E., Labitzke R., Khanh N. Q., Löffler F., Gottschalk M., Jany K. D. Cloning and DNA sequence analysis of a polygalacturonase cDNA from Aspergillus niger RH5344. Biochim Biophys Acta. 1990 Sep 10;1087(1):104–106. doi: 10.1016/0167-4781(90)90130-t. [DOI] [PubMed] [Google Scholar]
  26. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  27. Scott-Craig J. S., Panaccione D. G., Cervone F., Walton J. D. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell. 1990 Dec;2(12):1191–1200. doi: 10.1105/tpc.2.12.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES