Abstract
The enzymatic mechanisms involved in the degradation of phenanthrene by the white rot fungus Pleurotus ostreatus were examined. Phase I metabolism (cytochrome P-450 monooxygenase and epoxide hydrolase) and phase II conjugation (glutathione S-transferase, aryl sulfotransferase, UDP-glucuronosyltransferase, and UDP-glucosyltransferase) enzyme activities were determined for mycelial extracts of P. ostreatus. Cytochrome P-450 was detected in both cytosolic and microsomal fractions at 0.16 and 0.38 nmol min(sup-1) mg of protein(sup1), respectively. Both fractions oxidized [9,10-(sup14)C]phenanthrene to phenanthrene trans-9,10-dihydrodiol. The cytochrome P-450 inhibitors 1-aminobenzotriazole (0.1 mM), SKF-525A (proadifen, 0.1 mM), and carbon monoxide inhibited the cytosolic and microsomal P-450s differently. Cytosolic and microsomal epoxide hydrolase activities, with phenanthrene 9,10-oxide as the substrate, were similar, with specific activities of 0.50 and 0.41 nmol min(sup-1) mg of protein(sup-1), respectively. The epoxide hydrolase inhibitor cyclohexene oxide (5 mM) significantly inhibited the formation of phenanthrene trans-9,10-dihydrodiol in both fractions. The phase II enzyme 1-chloro-2,4-dinitrobenzene glutathione S-transferase was detected in the cytosolic fraction (4.16 nmol min(sup-1) mg of protein(sup-1)), whereas aryl adenosine-3(prm1)-phosphate-5(prm1)-phosphosulfate sulfotransferase (aryl PAPS sulfotransferase) UDP-glucuronosyltransferase, and UDP-glucosyltransferase had microsomal activities of 2.14, 4.25, and 4.21 nmol min(sup-1) mg of protein(sup-1), respectively, with low activity in the cytosolic fraction. However, when P. ostreatus culture broth incubated with phenanthrene was screened for phase II metabolites, no sulfate, glutathione, glucoside, or glucuronide conjugates of phenanthrene metabolites were detected. These experiments indicate the involvement of cytochrome P-450 monooxygenase and epoxide hydrolase in the initial phase I oxidation of phenanthrene to form phenanthrene trans-9,10-dihydrodiol. Laccase and manganese-independent peroxidase were not involved in the initial oxidation of phenanthrene. Although P. ostreatus had phase II xenobiotic metabolizing enzymes, conjugation reactions were not important for the elimination of hydroxylated phenanthrene.
Full Text
The Full Text of this article is available as a PDF (239.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barclay C. D., Farquhar G. F., Legge R. L. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 1995 Mar;42(6):958–963. doi: 10.1007/BF00191197. [DOI] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Cerniglia C. E. Mineralization of Polycyclic Aromatic Hydrocarbons by the White Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jan;62(1):292–295. doi: 10.1128/aem.62.1.292-295.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. E. Initial Oxidation Products in the Metabolism of Pyrene, Anthracene, Fluorene, and Dibenzothiophene by the White Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jul;62(7):2554–2559. doi: 10.1128/aem.62.7.2554-2559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jul;62(7):2547–2553. doi: 10.1128/aem.62.7.2547-2553.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourbonnais R., Paice M. G., Reid I. D., Lanthier P., Yaguchi M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol. 1995 May;61(5):1876–1880. doi: 10.1128/aem.61.5.1876-1880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
- Casillas R. P., Crow S. A., Jr, Heinze T. M., Deck J., Cerniglia C. E. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol. 1996 Apr;16(4):205–215. doi: 10.1007/BF01570023. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Gibson D. T. Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. J Biol Chem. 1979 Dec 10;254(23):12174–12180. [PubMed] [Google Scholar]
- Daly A. K. Molecular basis of polymorphic drug metabolism. J Mol Med (Berl) 1995 Nov;73(11):539–553. doi: 10.1007/BF00195139. [DOI] [PubMed] [Google Scholar]
- Dhawale S. W., Dhawale S. S., Dean-Ross D. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol. 1992 Sep;58(9):3000–3006. doi: 10.1128/aem.58.9.3000-3006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dlugoński J., Bartnicka K., Zemełko I., Chojecka V., Sedlaczek L. Determination of cytochrome P-450 in Cunninghamella elegans intact protoplasts and cell-free preparations capable of steroid hydroxylation. J Basic Microbiol. 1991;31(5):347–356. doi: 10.1002/jobm.3620310510. [DOI] [PubMed] [Google Scholar]
- Gierow P., Jergil B. Spectrophotometric method for glucose-6-phosphate phosphatase. Methods Enzymol. 1982;89(Pt 500):44–47. doi: 10.1016/s0076-6879(82)89010-1. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Green B., Gai W. Z. Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10605–10608. doi: 10.1073/pnas.88.23.10605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmans S., van der Werf M. J., de Bont J. A. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol. 1990 May;56(5):1347–1351. doi: 10.1128/aem.56.5.1347-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrandt A. G., Roots I., Tjoe M., Heinemeyer G. Hydrogen peroxide in hepatic microsomes. Methods Enzymol. 1978;52:342–350. doi: 10.1016/s0076-6879(78)52037-5. [DOI] [PubMed] [Google Scholar]
- Jacobs M. H., Van den Wijngaard A. J., Pentenga M., Janssen D. B. Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp. Eur J Biochem. 1991 Dec 18;202(3):1217–1222. doi: 10.1111/j.1432-1033.1991.tb16493.x. [DOI] [PubMed] [Google Scholar]
- Jerina D. M. The 1982 Bernard B. brodie Award Lecture. Metabolism of Aromatic hydrocarbons by the cytochrome P-450 system and epoxide hydrolase. Drug Metab Dispos. 1983 Jan-Feb;11(1):1–4. [PubMed] [Google Scholar]
- Kalb V. F., Loper J. C., Dey C. R., Woods C. W., Sutter T. R. Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene. 1986;45(3):237–245. doi: 10.1016/0378-1119(86)90021-1. [DOI] [PubMed] [Google Scholar]
- Lange B., Kremer S., Sterner O., Anke H. Pyrene Metabolism in Crinipellis stipitaria: Identification of trans-4,5-Dihydro-4,5-Dihydroxypyrene and 1-Pyrenylsulfate in Strain JK364. Appl Environ Microbiol. 1994 Oct;60(10):3602–3607. doi: 10.1128/aem.60.10.3602-3607.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leakey J. A., Cunny H. C., Bazare J., Jr, Webb P. J., Lipscomb J. C., Slikker W., Jr, Feuers R. J., Duffy P. H., Hart R. W. Effects of aging and caloric restriction on hepatic drug metabolizing enzymes in the Fischer 344 rat. II: Effects on conjugating enzymes. Mech Ageing Dev. 1989 May;48(2):157–166. doi: 10.1016/0047-6374(89)90047-x. [DOI] [PubMed] [Google Scholar]
- Matthews D. E., Van Etten H. D. Detoxification of the phytoalexin pisatin by a fungal cytochrome P-450. Arch Biochem Biophys. 1983 Jul 15;224(2):494–505. doi: 10.1016/0003-9861(83)90237-0. [DOI] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
- Oesch F., Golan M. Specificity of mouse liver cytosolic epoxide hydrolase for K-region epoxides derived from polycyclic aromatic hydrocarbons. Cancer Lett. 1980 May;9(3):169–175. doi: 10.1016/0304-3835(80)90083-x. [DOI] [PubMed] [Google Scholar]
- Oesch F. Purification and specificity of a human microsomal epoxide hydratase. Biochem J. 1974 Apr;139(1):77–88. doi: 10.1042/bj1390077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortiz de Montellano P. R. The 1994 Bernard B. Brodie Award Lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug Metab Dispos. 1995 Nov;23(11):1181–1187. [PubMed] [Google Scholar]
- Papadopoulos D., Jörnvall H., Rydström J., DePierre J. W. Purification and initial characterization of microsomal epoxide hydrolase from the human adrenal gland. Biochim Biophys Acta. 1994 Jun 12;1206(2):253–262. doi: 10.1016/0167-4838(94)90216-x. [DOI] [PubMed] [Google Scholar]
- Sariaslani F. S. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178. doi: 10.1016/s0065-2164(08)70453-2. [DOI] [PubMed] [Google Scholar]
- Seidegård J., DePierre J. W. Microsomal epoxide hydrolase. Properties, regulation and function. Biochim Biophys Acta. 1983 Dec 29;695(3-4):251–270. doi: 10.1016/0304-419x(83)90014-8. [DOI] [PubMed] [Google Scholar]
- Shoun H., Sudo Y., Beppu T. Subterminal hydroxylation of fatty acids by a cytochrome P-450-dependent enzyme system from a fungus, Fusarium oxysporum. J Biochem. 1985 Mar;97(3):755–763. doi: 10.1093/oxfordjournals.jbchem.a135115. [DOI] [PubMed] [Google Scholar]
- Sutherland J. B. Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol. 1992 Jan;9(1):53–61. doi: 10.1007/BF01576368. [DOI] [PubMed] [Google Scholar]
- Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker J. W., Orville A. M., Lipscomb J. D. Protocatechuate 3,4-dioxygenase from Brevibacterium fuscum. Methods Enzymol. 1990;188:82–88. doi: 10.1016/0076-6879(90)88016-4. [DOI] [PubMed] [Google Scholar]
- Wojtaś-Wasilewska M., Trojanowski J., Luterek J. Aromatic ring cleavage of protocatechuic acid by the white-rot fungus Pleurotus ostreatus. Acta Biochim Pol. 1983;30(3-4):291–302. [PubMed] [Google Scholar]
- Wojtaś-Wasilewska M., Trojanowski J. Purification and properties of protocatechuate 3,4-dioxygenase from Chaetomium piluliferum induced with p-hydroxybenzoic acid. Acta Biochim Pol. 1980;27(1):21–34. [PubMed] [Google Scholar]
- Zhang D., Yang Y., Leakey J. E., Cerniglia C. E. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett. 1996 May 1;138(2-3):221–226. doi: 10.1111/j.1574-6968.1996.tb08161.x. [DOI] [PubMed] [Google Scholar]
- van den Brink H. J., van Zeijl C. M., Brons J. F., van den Hondel C. A., van Gorcom R. F. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger. DNA Cell Biol. 1995 Aug;14(8):719–729. doi: 10.1089/dna.1995.14.719. [DOI] [PubMed] [Google Scholar]
