Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2679–2685. doi: 10.1128/aem.63.7.2679-2685.1997

Two-Dimensional Polyacrylamide Gel Electrophoresis Analysis of the Acid Tolerance Response in Listeria monocytogenes LO28

B O'Driscoll, C Gahan, C Hill
PMCID: PMC1389200  PMID: 16535645

Abstract

Listeria monocytogenes is capable of withstanding low pH after initial exposure to sublethal acidic conditions, a phenomenon termed the acid tolerance response (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1996). Treatment of L. monocytogenes LO28 with chloramphenicol during acid adaptation abrogated the protective effect, suggesting that de novo protein synthesis is required for the acid tolerance response. Analysis of protein expression during acid adaptation by two-dimensional gel electrophoresis revealed changes in the levels of 53 proteins. Significant protein differences were also evident between nonadapted L. monocytogenes LO28 and a constitutively acid-tolerant mutant, ATM56. In addition, the analysis[S_TABC] revealed differences in protein expression between cells induced with a weak acid (lactic acid) and those induced with a strong acid (HCl). Comparison of both acid-adapted LO28 and ATM56 revealed that both are capable of maintaining their internal pH (pH(infi)) at higher levels than nonadapted control cells during severe acid stress. Collectively, the data demonstrate the profound alterations in protein synthesis which take place during acid adaptation in L. monocytogenes and ultimately lead to an increased ability to survive severe stress conditions.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baik H. S., Bearson S., Dunbar S., Foster J. W. The acid tolerance response of Salmonella typhimurium provides protection against organic acids. Microbiology. 1996 Nov;142(Pt 11):3195–3200. doi: 10.1099/13500872-142-11-3195. [DOI] [PubMed] [Google Scholar]
  2. Cherrington C. A., Hinton M., Mead G. C., Chopra I. Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol. 1991;32:87–108. doi: 10.1016/s0065-2911(08)60006-5. [DOI] [PubMed] [Google Scholar]
  3. Davis M. J., Coote P. J., O'Byrne C. P. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology. 1996 Oct;142(Pt 10):2975–2982. doi: 10.1099/13500872-142-10-2975. [DOI] [PubMed] [Google Scholar]
  4. Foster J. W., Hall H. K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol. 1992 Jul;174(13):4317–4323. doi: 10.1128/jb.174.13.4317-4323.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster J. W. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit Rev Microbiol. 1995;21(4):215–237. doi: 10.3109/10408419509113541. [DOI] [PubMed] [Google Scholar]
  6. Foster J. W., Park Y. K., Bang I. S., Karem K., Betts H., Hall H. K., Shaw E. Regulatory circuits involved with pH-regulated gene expression in Salmonella typhimurium. Microbiology. 1994 Feb;140(Pt 2):341–352. doi: 10.1099/13500872-140-2-341. [DOI] [PubMed] [Google Scholar]
  7. Foster J. W. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. doi: 10.1128/jb.173.21.6896-6902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gahan C. G., O'Driscoll B., Hill C. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol. 1996 Sep;62(9):3128–3132. doi: 10.1128/aem.62.9.3128-3132.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heyde M., Portalier R. Acid shock proteins of Escherichia coli. FEMS Microbiol Lett. 1990 May;57(1-2):19–26. doi: 10.1016/0378-1097(90)90406-g. [DOI] [PubMed] [Google Scholar]
  10. Hickey E. W., Hirshfield I. N. Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium. Appl Environ Microbiol. 1990 Apr;56(4):1038–1045. doi: 10.1128/aem.56.4.1038-1045.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill C., O'Driscoll B., Booth I. Acid adaptation and food poisoning microorganisms. Int J Food Microbiol. 1995 Dec;28(2):245–254. doi: 10.1016/0168-1605(95)00060-7. [DOI] [PubMed] [Google Scholar]
  12. Karem K. L., Foster J. W., Bej A. K. Adaptive acid tolerance response (ATR) in Aeromonas hydrophila. Microbiology. 1994 Jul;140(Pt 7):1731–1736. doi: 10.1099/13500872-140-7-1731. [DOI] [PubMed] [Google Scholar]
  13. Kroll R. G., Booth I. R. The role of potassium transport in the generation of a pH gradient in Escherichia coli. Biochem J. 1981 Sep 15;198(3):691–698. doi: 10.1042/bj1980691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nyström T., Neidhardt F. C. Isolation and properties of a mutant of Escherichia coli with an insertional inactivation of the uspA gene, which encodes a universal stress protein. J Bacteriol. 1993 Jul;175(13):3949–3956. doi: 10.1128/jb.175.13.3949-3956.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Driscoll B., Gahan C. G., Hill C. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol. 1996 May;62(5):1693–1698. doi: 10.1128/aem.62.5.1693-1698.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  17. Patchett R. A., Kelly A. F., Kroll R. G. Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol. 1992 Dec;58(12):3959–3963. doi: 10.1128/aem.58.12.3959-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rowbury R. J. An assessment of environmental factors influencing acid tolerance and sensitivity in Escherichia coli, Salmonella spp. and other enterobacteria. Lett Appl Microbiol. 1995 Jun;20(6):333–337. doi: 10.1111/j.1472-765x.1995.tb01314.x. [DOI] [PubMed] [Google Scholar]
  19. Salmond C. V., Kroll R. G., Booth I. R. The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol. 1984 Nov;130(11):2845–2850. doi: 10.1099/00221287-130-11-2845. [DOI] [PubMed] [Google Scholar]
  20. Schellhorn H. E., Stones V. L. Regulation of katF and katE in Escherichia coli K-12 by weak acids. J Bacteriol. 1992 Jul;174(14):4769–4776. doi: 10.1128/jb.174.14.4769-4776.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spector M. P., Aliabadi Z., Gonzalez T., Foster J. W. Global control in Salmonella typhimurium: two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins. J Bacteriol. 1986 Oct;168(1):420–424. doi: 10.1128/jb.168.1.420-424.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. doi: 10.1099/00221287-140-4-741. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES