Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2785–2791. doi: 10.1128/aem.63.7.2785-2791.1997

Reductive Dehalogenation and Mineralization of 3-Chlorobenzoate in the Presence of Sulfate by Microorganisms from a Methanogenic Aquifer

G T Townsend, K Ramanand, J M Suflita
PMCID: PMC1389205  PMID: 16535650

Abstract

We investigated the anaerobic biodegradation of 3-chlorobenzoate (3CBz) by microorganisms from an aquifer where chloroaromatic compounds were previously found to resist decay in the presence of sulfate. After a lengthy lag period, 3CBz was degraded in the presence of sulfate and concurrently with sulfate reduction. Chlorine removal from 2,5- or 3,5-dichlorobenzoates and the transient appearance of benzoate from 3CBz confirmed that reductive dehalogenation was the initial fate process for these substrates. Sulfate did not influence 3CBz degradation rates in acclimated enrichment cultures but accelerated the development of 3CBz degradation activity in fresh transfers. Benzoate degradation was more rapid in the presence of sulfate regardless of the enrichment history. Nitrate, sulfite, and a headspace of air inhibited 3CBz dehalogenation, while thiosulfate had no effect. Mass balance determinations revealed that 71 to 107% of the theoretically expected amount of methane was produced from 3CBz and benzoate oxidation in the absence of sulfate. In parallel cultures containing 15 mM sulfate, methanogenesis was reduced to 48 to 71% of that theoretically expected, while sulfate reduction accounted for 12 to 50% of the reducing equivalents. In either the presence or absence of sulfate, steady-state dissolved hydrogen concentrations were similar to those reported for sulfate-reducing or methanogenic environments, respectively. Molybdate inhibited sulfate reduction and 3CBz dehalogenation to a similar extent but did not affect benzoate biodegradation. Sulfate-dependent 3CBz biodegradation was not observed. We conclude that reductive dehalogenation and sulfate reduction occur concurrently in these enrichments and that the sulfate-dependent stimulation in fresh transfers was likely due to the acceleration of benzoate oxidation.

Full Text

The Full Text of this article is available as a PDF (159.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian N. R., Suflita J. M. Reductive dehalogenation of a nitrogen heterocyclic herbicide in anoxic aquifer slurries. Appl Environ Microbiol. 1990 Jan;56(1):292–294. doi: 10.1128/aem.56.1.292-294.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allard A. S., Hynning P. A., Remberger M., Neilson A. H. Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones. Appl Environ Microbiol. 1992 Mar;58(3):961–968. doi: 10.1128/aem.58.3.961-968.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berkaw M., Sowers K. R., May H. D. Anaerobic ortho Dechlorination of Polychlorinated Biphenyls by Estuarine Sediments from Baltimore Harbor. Appl Environ Microbiol. 1996 Jul;62(7):2534–2539. doi: 10.1128/aem.62.7.2534-2539.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deweerd K. A., Suflita J. M. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of "Desulfomonile tiedjei". Appl Environ Microbiol. 1990 Oct;56(10):2999–3005. doi: 10.1128/aem.56.10.2999-3005.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Genthner B. R., Price W. A., Pritchard P. H. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions. Appl Environ Microbiol. 1989 Jun;55(6):1466–1471. doi: 10.1128/aem.55.6.1466-1471.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerritse J., Renard V., Pedro Gomes T. M., Lawson P. A., Collins M. D., Gottschal J. C. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol. 1996 Feb;165(2):132–140. doi: 10.1007/s002030050308. [DOI] [PubMed] [Google Scholar]
  8. Gibson S. A., Suflita J. M. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol. 1986 Oct;52(4):681–688. doi: 10.1128/aem.52.4.681-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Häggblom M. M., Rivera M. D., Young L. Y. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol. 1993 Apr;59(4):1162–1167. doi: 10.1128/aem.59.4.1162-1167.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Häggblom M. M., Young L. Y. Chlorophenol degradation coupled to sulfate reduction. Appl Environ Microbiol. 1990 Nov;56(11):3255–3260. doi: 10.1128/aem.56.11.3255-3260.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kazumi J., Häggblom M. M., Young L. Y. Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors. Appl Microbiol Biotechnol. 1995 Oct;43(5):929–936. doi: 10.1007/BF02431930. [DOI] [PubMed] [Google Scholar]
  12. Kohring G. W., Zhang X. M., Wiegel J. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl Environ Microbiol. 1989 Oct;55(10):2735–2737. doi: 10.1128/aem.55.10.2735-2737.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuhn E. P., Townsend G. T., Suflita J. M. Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl Environ Microbiol. 1990 Sep;56(9):2630–2637. doi: 10.1128/aem.56.9.2630-2637.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Madsen T., Aamand J. Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol. 1991 Sep;57(9):2453–2458. doi: 10.1128/aem.57.9.2453-2458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mohn W. W., Kennedy K. J. Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol. 1992 Jul;58(7):2131–2136. doi: 10.1128/aem.58.7.2131-2136.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mormile M. R., Gurijala K. R., Robinson J. A., McInerney M. J., Suflita J. M. The importance of hydrogen in landfill fermentations. Appl Environ Microbiol. 1996 May;62(5):1583–1588. doi: 10.1128/aem.62.5.1583-1588.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morris P. J., Mohn W. W., Quensen J. F., 3rd, Tiedje J. M., Boyd S. A. Establishment of polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination. Appl Environ Microbiol. 1992 Sep;58(9):3088–3094. doi: 10.1128/aem.58.9.3088-3094.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramanand K., Nagarajan A., Suflita J. M. Reductive dechlorination of the nitrogen heterocyclic herbicide picloram. Appl Environ Microbiol. 1993 Jul;59(7):2251–2256. doi: 10.1128/aem.59.7.2251-2256.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanford R. A., Cole J. R., Löffler F. E., Tiedje J. M. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol. 1996 Oct;62(10):3800–3808. doi: 10.1128/aem.62.10.3800-3808.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Utkin I., Woese C., Wiegel J. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol. 1994 Oct;44(4):612–619. doi: 10.1099/00207713-44-4-612. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES