Abstract
Experiments were conducted to determine the pathway of melamine metabolism by Klebsiella terragena (strain DRS-1) and the effect of added NH(inf4)(sup+) on the rates and extent of melamine metabolism. In the absence of added NH(inf4)(sup+), 1 mM melamine was metabolized concomitantly with growth. Ammeline, ammelide, cyanuric acid, and NH(inf4)(sup+) accumulated transiently in the culture medium to maximal concentrations of 0.012 mM, 0.39 mM, trace levels, and 0.61 mM, respectively. In separate incubations, in which cells were grown on either ammeline or ammelide (in the absence of NH(inf4)(sup+)), ammeline was metabolized without a lag while ammelide metabolism was observed only after 3 h. In the presence of 6 mM added NH(inf4)(sup+) (enriched with 5% (sup15)N), ammeline, ammelide, and cyanuric acid accumulated transiently to maximal concentrations of 0.002 mM, 0.47 mM, and trace levels, respectively, indicating that the added NH(inf4)(sup+) had little effect on the relative rates of triazine metabolism. These data suggest that the primary mode of melamine metabolism by K. terragena is hydrolytic, resulting in successive deaminations of the triazine ring. Use of (sup15)N-enriched NH(inf4)(sup+) allowed estimates of rates of triazine-N mineralization and assimilation of NH(inf4)(sup+)-N versus triazine-N into biomass. A decrease in the percent (sup15)N in the external NH(inf4)(sup+) pool, in conjunction with the accumulation of ammelide and/or triazine-derived NH(inf4)(sup+) in the culture medium, suggests that the initial reactions in the melamine metabolic pathway may occur outside the cytoplasmic membrane.
Full Text
The Full Text of this article is available as a PDF (172.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Jutzi K., Cook A. M., Hütter R. The degradative pathway of the s-triazine melamine. The steps to ring cleavage. Biochem J. 1982 Dec 15;208(3):679–684. doi: 10.1042/bj2080679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelbaum R. T., Allan D. L., Wackett L. P. Isolation and Characterization of a Pseudomonas sp. That Mineralizes the s-Triazine Herbicide Atrazine. Appl Environ Microbiol. 1995 Apr;61(4):1451–1457. doi: 10.1128/aem.61.4.1451-1457.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radosevich M., Traina S. J., Hao Y. L., Tuovinen O. H. Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol. 1995 Jan;61(1):297–302. doi: 10.1128/aem.61.1.297-302.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasek P. H., Karns J. S. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. J Bacteriol. 1989 Jul;171(7):4038–4044. doi: 10.1128/jb.171.7.4038-4044.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanze-Kontchou C., Gschwind N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol. 1994 Dec;60(12):4297–4302. doi: 10.1128/aem.60.12.4297-4302.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]