Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3059–3067. doi: 10.1128/aem.63.8.3059-3067.1997

Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp

L K Hardison, S S Curry, L M Ciuffetti, M R Hyman
PMCID: PMC1389222  PMID: 16535667

Abstract

In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination.

Full Text

The Full Text of this article is available as a PDF (257.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Brady J. F., Lee M. J., Li M., Ishizaki H., Yang C. S. Diethyl ether as a substrate for acetone/ethanol-inducible cytochrome P-450 and as an inducer for cytochrome(s) P-450. Mol Pharmacol. 1988 Feb;33(2):148–154. [PubMed] [Google Scholar]
  3. Brady J. F., Xiao F., Ning S. M., Yang C. S. Metabolism of methyl tertiary-butyl ether by rat hepatic microsomes. Arch Toxicol. 1990;64(2):157–160. doi: 10.1007/BF01974403. [DOI] [PubMed] [Google Scholar]
  4. Chengelis C. P., Neal R. A. Microsomal metabolism of diethyl ether. Biochem Pharmacol. 1980 Feb;29(2):247–248. doi: 10.1016/0006-2952(80)90334-2. [DOI] [PubMed] [Google Scholar]
  5. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curry S., Ciuffetti L., Hyman M. Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes. Appl Environ Microbiol. 1996 Jun;62(6):2198–2200. doi: 10.1128/aem.62.6.2198-2200.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalton H., Stirling D. I. Co-metabolism. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):481–496. doi: 10.1098/rstb.1982.0056. [DOI] [PubMed] [Google Scholar]
  8. Davies J. S., Wellman A. M., Zajic J. E. Hypomycetes utilizing natural gas. Can J Microbiol. 1973 Jan;19(1):81–85. doi: 10.1139/m73-012. [DOI] [PubMed] [Google Scholar]
  9. Davies J. S., Wellman A. M., Zajic J. E. Oxidation of ethane by an Acremonium species. Appl Environ Microbiol. 1976 Jul;32(1):14–20. doi: 10.1128/aem.32.1.14-20.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hazeu W. Some cultural and physiological aspects of methane-utilizing bacteria. Antonie Van Leeuwenhoek. 1975;41(2):121–134. doi: 10.1007/BF02565044. [DOI] [PubMed] [Google Scholar]
  11. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hur H., Newman L. M., Wackett L. P., Sadowsky M. J. Toluene 2-Monooxygenase-Dependent Growth of Burkholderia cepacia G4/PR1 on Diethyl Ether. Appl Environ Microbiol. 1997 Apr;63(4):1606–1609. doi: 10.1128/aem.63.4.1606-1609.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyman M. R., Arp D. J. Acetylene inhibition of metalloenzymes. Anal Biochem. 1988 Sep;173(2):207–220. doi: 10.1016/0003-2697(88)90181-9. [DOI] [PubMed] [Google Scholar]
  14. McLee A. G., Kormendy A. C., Wayman M. Isolation and characterization of n-butane-utilizing microorganisms. Can J Microbiol. 1972 Aug;18(8):1191–1195. doi: 10.1139/m72-186. [DOI] [PubMed] [Google Scholar]
  15. Mo K., Lora C. O., Wanken A. E., Javanmardian M., Yang X., Kulpa C. F. Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol. 1997 Jan;47(1):69–72. doi: 10.1007/s002530050890. [DOI] [PubMed] [Google Scholar]
  16. Parales R. E., Adamus J. E., White N., May H. D. Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl Environ Microbiol. 1994 Dec;60(12):4527–4530. doi: 10.1128/aem.60.12.4527-4530.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patel R. N., Hou C. T., Laskin A. I., Felix A. Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26. Appl Environ Microbiol. 1982 Nov;44(5):1130–1137. doi: 10.1128/aem.44.5.1130-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Remmer H., Hintze T., Frańk H., Müh-Zange M. Cytochrome P-450 oxidation of alkanes originating as scission products during lipid peroxidation. Xenobiotica. 1984 Jan-Feb;14(1-2):207–219. doi: 10.3109/00498258409151406. [DOI] [PubMed] [Google Scholar]
  19. Salanitro J. P., Diaz L. A., Williams M. P., Wisniewski H. L. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Appl Environ Microbiol. 1994 Jul;60(7):2593–2596. doi: 10.1128/aem.60.7.2593-2596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sariaslani F. S. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178. doi: 10.1016/s0065-2164(08)70453-2. [DOI] [PubMed] [Google Scholar]
  21. White G. F., Russell N. J., Tidswell E. C. Bacterial scission of ether bonds. Microbiol Rev. 1996 Mar;60(1):216–232. doi: 10.1128/mr.60.1.216-232.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zajic J. E., Volesky B., Wellman A. Growth of Graphium sp. on natural gas. Can J Microbiol. 1969 Oct;15(10):1231–1236. doi: 10.1139/m69-222. [DOI] [PubMed] [Google Scholar]
  23. van den Wijngaard A. J., Prins J., Smal A. J., Janssen D. B. Degradation of 2-Chloroethylvinylether by Ancylobacter aquaticus AD25 and AD27. Appl Environ Microbiol. 1993 Sep;59(9):2777–2783. doi: 10.1128/aem.59.9.2777-2783.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES