Abstract
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.
Full Text
The Full Text of this article is available as a PDF (226.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boogerd F. C., Van Verseveld H. W., Stouthamer A. H. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim Biophys Acta. 1981 Dec 14;638(2):181–191. doi: 10.1016/0005-2728(81)90226-7. [DOI] [PubMed] [Google Scholar]
- Calhoun M. W., Oden K. L., Gennis R. B., de Mattos M. J., Neijssel O. M. Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol. 1993 May;175(10):3020–3025. doi: 10.1128/jb.175.10.3020-3025.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE LEY J., SCHEL J. Studies on the metabolism of Acetobacter peroxydans. II. The enzymic mechanism of lactate metabolism. Biochim Biophys Acta. 1959 Sep;35:154–165. doi: 10.1016/0006-3002(59)90344-0. [DOI] [PubMed] [Google Scholar]
- DELEY J., KERSTERS K. OXIDATION OF ALIPHATIC GLYCOLS BY ACETIC ACID BACTERIA. Bacteriol Rev. 1964 Jun;28:164–180. [PMC free article] [PubMed] [Google Scholar]
- Hocking A. D. Strategies for microbial growth at reduced water activities. Microbiol Sci. 1988 Sep;5(9):280–284. [PubMed] [Google Scholar]
- Jones C. W., Brice J. M., Edwards C. The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch Microbiol. 1977 Oct 24;115(1):85–93. doi: 10.1007/BF00427850. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Toyama H., Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994;36:247–301. doi: 10.1016/s0065-2911(08)60181-2. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989 Feb;55(2):468–477. doi: 10.1128/aem.55.2.468-477.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell J. B., Cook G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995 Mar;59(1):48–62. doi: 10.1128/mr.59.1.48-62.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOUTHAMER A. H. Energy production in Gluconobacter liquefaciens. Biochim Biophys Acta. 1962 Jan 1;56:19–32. doi: 10.1016/0006-3002(62)90523-1. [DOI] [PubMed] [Google Scholar]
- Van Urk H., Mak P. R., Scheffers W. A., van Dijken J. P. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast. 1988 Dec;4(4):283–291. doi: 10.1002/yea.320040406. [DOI] [PubMed] [Google Scholar]
- Van Walraven H. S., Strotmann H., Schwarz O., Rumberg B. The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett. 1996 Feb 5;379(3):309–313. doi: 10.1016/0014-5793(95)01536-1. [DOI] [PubMed] [Google Scholar]
- Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992 Jul;8(7):501–517. doi: 10.1002/yea.320080703. [DOI] [PubMed] [Google Scholar]
- Verduyn C., Stouthamer A. H., Scheffers W. A., van Dijken J. P. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek. 1991 Jan;59(1):49–63. doi: 10.1007/BF00582119. [DOI] [PubMed] [Google Scholar]
- de Jong-Gubbels P., Vanrolleghem P., Heijnen S., van Dijken J. P., Pronk J. T. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast. 1995 Apr 30;11(5):407–418. doi: 10.1002/yea.320110503. [DOI] [PubMed] [Google Scholar]
- van den Berg M. A., de Jong-Gubbels P., Kortland C. J., van Dijken J. P., Pronk J. T., Steensma H. Y. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem. 1996 Nov 15;271(46):28953–28959. doi: 10.1074/jbc.271.46.28953. [DOI] [PubMed] [Google Scholar]