Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3463–3473. doi: 10.1128/aem.63.9.3463-3473.1997

Bacterial Transformations of Naphthothiophenes

K G Kropp, J T Andersson, P M Fedorak
PMCID: PMC1389243  PMID: 16535687

Abstract

Naphthothiophenes are minor components of fossil fuels, and they can enter the environment from oil spills. Naphtho[2,1-b]thiophene, naphtho[2,3-b]thiophene, and 1-methylnaphtho[2,1-b]thiophene were synthesized and used in biodegradation studies with 1-methylnaphthalene (1-MN)-degrading Pseudomonas strains W1, F, and BT1. Cultures were incubated with one of the naphthothiophenes with or without 1-MN, acidified, and extracted with CH(inf2)Cl(inf2). The extracts were analyzed by gas chromatography with flame photometric and mass detectors to characterize sulfur-containing metabolites and with an atomic emission detector for quantification. Only strain W1 was able to grow on naphtho[2,1-b]thiophene, but strains F and BT1 cometabolized this compound if 1-MN was present. 1-MN was required by all three strains to metabolize naphtho[2,3-b]thiophene, which was more resistant to biodegradation than the [2,1-b] isomer. Two metabolites of naphtho [2,1-b]thiophene were purified, analyzed by (sup1)H nuclear magnetic resonance spectroscopy, and found to be 4-hydroxybenzothiophene-5-carboxylic acid (metabolite I) and 5-hydroxybenzothiophene-4-carboxylic acid (metabolite II). In cultures of strain W1 grown for 7 days on 52 (mu)mol of naphtho[2,1-b]thiophene, >84% of the substrate was degraded and metabolites I and II accounted for 19 and 9%, respectively, of the original amount of naphtho[2,1-b]thiophene. When 1-MN was present, strain W1 degraded >97% of the naphtho[2,1-b]thiophene and similar amounts of metabolite II were produced, but metabolite I did not accumulate. 1-MN was shown to promote the further degradation of metabolite I, but not of metabolite II, by strain W1. Thus, 1-MN enhanced the biodegradation of naphtho[2,1-b]thiophene. Approximately 70% of the 1-methylnaphtho [2,1-b]thiophene added to cultures of strain W1 with 1-MN was recovered as 4-hydroxy-3-methylbenzothiophene-5-carboxylic acid, the 3-methyl analog of metabolite I. The methyl substitution hindered further metabolism of 3-methyl-metabolite I even in the presence of 1-MN. Cometabolism of naphtho[2,3-b]thiophene yielded two products that were tentatively identified as 5-hydroxybenzothiophene-6-carboxylic and 6-hydroxybenzothiophene-5-carboxylic acids.

Full Text

The Full Text of this article is available as a PDF (276.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohonos N., Chou T. W., Spanggord R. J. Some observations on biodegradation of pollutants in aquatic systems. Jpn J Antibiot. 1977 Dec;30 (Suppl):275–285. [PubMed] [Google Scholar]
  2. Denome S. A., Stanley D. C., Olson E. S., Young K. D. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol. 1993 Nov;175(21):6890–6901. doi: 10.1128/jb.175.21.6890-6901.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eaton R. W., Chapman P. J. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992 Dec;174(23):7542–7554. doi: 10.1128/jb.174.23.7542-7554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eaton R. W., Nitterauer J. D. Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria. J Bacteriol. 1994 Jul;176(13):3992–4002. doi: 10.1128/jb.176.13.3992-4002.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fedorak P. M., Grbić-Galić D. Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol. 1991 Apr;57(4):932–940. doi: 10.1128/aem.57.4.932-940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fedorak P. M., Westlake D. W. Fungal Metabolism of n-Alkylbenzenes. Appl Environ Microbiol. 1986 Feb;51(2):435–437. doi: 10.1128/aem.51.2.435-437.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foght J. M., Westlake D. W. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol. 1988 Oct;34(10):1135–1141. doi: 10.1139/m88-200. [DOI] [PubMed] [Google Scholar]
  8. Gallagher J. R., Olson E. S., Stanley D. C. Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett. 1993 Feb 15;107(1):31–35. doi: 10.1016/0378-1097(93)90349-7. [DOI] [PubMed] [Google Scholar]
  9. Izumi Y., Ohshiro T., Ogino H., Hine Y., Shimao M. Selective Desulfurization of Dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol. 1994 Jan;60(1):223–226. doi: 10.1128/aem.60.1.223-226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kiyohara H., Torigoe S., Kaida N., Asaki T., Iida T., Hayashi H., Takizawa N. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol. 1994 Apr;176(8):2439–2443. doi: 10.1128/jb.176.8.2439-2443.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kropp K. G., Andersson J. T., Fedorak P. M. Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene. Appl Environ Microbiol. 1997 Aug;63(8):3032–3042. doi: 10.1128/aem.63.8.3032-3042.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kropp K. G., Gonçalves J. A., Andersson J. T., Fedorak P. M. Microbially Mediated Formation of Benzonaphthothiophenes from Benzo[b]thiophenes. Appl Environ Microbiol. 1994 Oct;60(10):3624–3631. doi: 10.1128/aem.60.10.3624-3631.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kropp K. G., Saftić S., Andersson J. T., Fedorak P. M. Transformations of six isomers of dimethylbenzothiophene by three Pseudomonas strains. Biodegradation. 1996 Jun;7(3):203–221. doi: 10.1007/BF00058180. [DOI] [PubMed] [Google Scholar]
  14. Laborde A. L., Gibson D. T. Metabolism of dibenzothiophene by a Beijerinckia species. Appl Environ Microbiol. 1977 Dec;34(6):783–790. doi: 10.1128/aem.34.6.783-790.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee M. K., Senius J. D., Grossman M. J. Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol. 1995 Dec;61(12):4362–4366. doi: 10.1128/aem.61.12.4362-4366.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monticello D. J., Bakker D., Finnerty W. R. Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol. 1985 Apr;49(4):756–760. doi: 10.1128/aem.49.4.756-760.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Omori T., Monna L., Saiki Y., Kodama T. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl Environ Microbiol. 1992 Mar;58(3):911–915. doi: 10.1128/aem.58.3.911-915.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sagardía F., Rigau J. J., Martínez-Lahoz A., Fuentes F., López C., Flores W. Degradation of benzothiophene and related compounds by a soil Pseudomonas in an oil-aqueous environment. Appl Microbiol. 1975 Jun;29(6):722–725. doi: 10.1128/am.29.6.722-725.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanseverino J., Applegate B. M., King J. M., Sayler G. S. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ Microbiol. 1993 Jun;59(6):1931–1937. doi: 10.1128/aem.59.6.1931-1937.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang P., Humphrey A. E., Krawiec S. Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Continuous Cultures. Appl Environ Microbiol. 1996 Aug;62(8):3066–3068. doi: 10.1128/aem.62.8.3066-3068.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang P., Krawiec S. Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Batch and Fed-Batch Cultures. Appl Environ Microbiol. 1996 May;62(5):1670–1675. doi: 10.1128/aem.62.5.1670-1675.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES