Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3499–3506. doi: 10.1128/aem.63.9.3499-3506.1997

Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium

F Solano, E Garcia, De Perez, A Sanchez-Amat
PMCID: PMC1389244  PMID: 16535688

Abstract

A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrykovitch G., Marx I. Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol. 1988 Apr;54(4):1061–1062. doi: 10.1128/aem.54.4.1061-1062.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins P. J., Kotterman M., Field J. A., Dobson A. Oxidation of Anthracene and Benzo[a]pyrene by Laccases from Trametes versicolor. Appl Environ Microbiol. 1996 Dec;62(12):4563–4567. doi: 10.1128/aem.62.12.4563-4567.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coon S. L., Kotob S., Jarvis B. B., Wang S., Fuqua W. C., Weiner R. M. Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl Environ Microbiol. 1994 Aug;60(8):3006–3010. doi: 10.1128/aem.60.8.3006-3010.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eggert C., Temp U., Eriksson K. E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol. 1996 Apr;62(4):1151–1158. doi: 10.1128/aem.62.4.1151-1158.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faure D., Bouillant M. L., Bally R. Isolation of Azospirillum lipoferum 4T Tn5 Mutants Affected in Melanization and Laccase Activity. Appl Environ Microbiol. 1994 Sep;60(9):3413–3415. doi: 10.1128/aem.60.9.3413-3415.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fukushima Y., Kirk T. K. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl Environ Microbiol. 1995 Mar;61(3):872–876. doi: 10.1128/aem.61.3.872-876.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huber M., Lerch K. The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa. FEBS Lett. 1987 Jul 27;219(2):335–338. doi: 10.1016/0014-5793(87)80247-8. [DOI] [PubMed] [Google Scholar]
  8. Jimenez-Cervantes C., Garcia-Borron J. C., Valverde P., Solano F., Lozano J. A. Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem. 1993 Oct 15;217(2):549–556. doi: 10.1111/j.1432-1033.1993.tb18276.x. [DOI] [PubMed] [Google Scholar]
  9. Jimenez-Cervantes C., Valverde P., García-Borrón J. C., Solano F., Lozano J. A. Improved tyrosinase activity stains in polyacrylamide electrophoresis gels. Pigment Cell Res. 1993 Dec;6(6):394–399. doi: 10.1111/j.1600-0749.1993.tb00621.x. [DOI] [PubMed] [Google Scholar]
  10. Kotob S. I., Coon S. L., Quintero E. J., Weiner R. M. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol. 1995 Apr;61(4):1620–1622. doi: 10.1128/aem.61.4.1620-1622.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LERNER A. B., FITZPATRICK T. B. Biochemistry of melanin formation. Physiol Rev. 1950 Jan;30(1):91–126. doi: 10.1152/physrev.1950.30.1.91. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mercado-Blanco J., García F., Fernández-López M., Olivares J. Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA. J Bacteriol. 1993 Sep;175(17):5403–5410. doi: 10.1128/jb.175.17.5403-5410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moore B. M., Flurkey W. H. Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem. 1990 Mar 25;265(9):4982–4988. [PubMed] [Google Scholar]
  15. Payne G. F., Sun W. Q. Tyrosinase reaction and subsequent chitosan adsorption for selective removal of a contaminant from a fermentation recycle stream. Appl Environ Microbiol. 1994 Feb;60(2):397–401. doi: 10.1128/aem.60.2.397-401.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pomerantz S. H., Murthy V. V. Purification and properties of tyrosinases from Vibrio tyrosinaticus. Arch Biochem Biophys. 1974 Jan;160(1):73–82. doi: 10.1016/s0003-9861(74)80010-x. [DOI] [PubMed] [Google Scholar]
  17. Pomerantz S. H. The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem. 1966 Jan 10;241(1):161–168. [PubMed] [Google Scholar]
  18. Ruzafa C., Sanchez-Amat A., Solano F. Characterization of the melanogenic system in Vibrio cholerae, ATCC 14035. Pigment Cell Res. 1995 Jun;8(3):147–152. doi: 10.1111/j.1600-0749.1995.tb00656.x. [DOI] [PubMed] [Google Scholar]
  19. Ruzafa C., Solano F., Sanchez-Amat A. The protein encoded by the Shewanella colwelliana melA gene is a p-hydroxyphenylpyruvate dioxygenase. FEMS Microbiol Lett. 1994 Dec 1;124(2):179–184. doi: 10.1111/j.1574-6968.1994.tb07282.x. [DOI] [PubMed] [Google Scholar]
  20. Slomczynski D., Nakas J. P., Tanenbaum S. W. Production and Characterization of Laccase from Botrytis cinerea 61-34. Appl Environ Microbiol. 1995 Mar;61(3):907–912. doi: 10.1128/aem.61.3.907-912.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sánchez-Amat A., Torrella F. Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios. Appl Environ Microbiol. 1990 Sep;56(9):2717–2725. doi: 10.1128/aem.56.9.2717-2725.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wittenberg C., Triplett E. L. A detergent-activated tyrosinase from Xenopus laevis. I. Purification and partial characterization. J Biol Chem. 1985 Oct 15;260(23):12535–12541. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES