Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3662–3668. doi: 10.1128/aem.63.9.3662-3668.1997

Application of Microautoradiography to the Study of Substrate Uptake by Filamentous Microorganisms in Activated Sludge

K Andreasen, P H Nielsen
PMCID: PMC1389253  PMID: 16535697

Abstract

Excessive growth of filamentous microorganisms in activated-sludge treatment plants is a major operational problem which causes poor settlement of activated sludge. An enhanced understanding of the factors controlling growth of different filamentous microorganisms is necessary in order to establish more successful control strategies. In the present study, the in situ substrate uptake was investigated by means of microautoradiography. It was demonstrated that the uptake of labeled organic substrates by the filamentous microorganisms, during short-term incubation, could be detected by microautoradiography. Viability and respiratory activity of the filaments were also detected by reduction of CTC (5-cyano-2,3-ditolyl tetrazolium chloride) and by incorporation of [(sup3)H]thymidine. Gram, Neisser, and fluorescence staining techniques were used for the localization and identification of the filaments. Activated-sludge samples from five wastewater treatment plants with bulking problems due to filamentous microorganisms were investigated. Microthrix parvicella, Nostocoida limicola, and Eikelboom's type 0041 and type 021N were investigated for their ability to take up organic substrates. A panel of six substrates, i.e., [(sup14)C]acetate, [(sup3)H]glucose, [(sup14)C]ethanol, [(sup3)H]glycine, [(sup3)H]leucine, and [(sup3)H]oleic acid, was tested. The uptake response was found to be very specific not only between the different filamentous types but also among filaments of the same type from different treatment plants. Interestingly, M. parvicella consistently took up only oleic acid among the tested substrates. It is concluded that microautoradiography is a useful method for investigation of in situ substrate uptake by filamentous microorganisms in activated sludge.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edwards M. C., Blakeman J. P. An autoradiographic method for determining nutrient competition between leaf epiphytes and plant pathogens. J Microsc. 1984 Feb;133(Pt 2):205–212. doi: 10.1111/j.1365-2818.1984.tb00486.x. [DOI] [PubMed] [Google Scholar]
  2. Slijkhuis H. Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol. 1983 Oct;46(4):832–839. doi: 10.1128/aem.46.4.832-839.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Williams T. M., Unz R. F. Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl Environ Microbiol. 1985 Apr;49(4):887–898. doi: 10.1128/aem.49.4.887-898.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES