Abstract
The ability of cellobiose dehydrogenase purified from Phanerochaete chrysosporium to modify a Douglas fir kraft pulp was assessed. Although the addition of cellobiose dehydrogenase alone had little effect, supplementation with cellobiose and iron resulted in a substantial reduction in the degree of polymerization of the pulp cellulose. When the reaction was monitored over time, a progressive depolymerization of the cellulose was apparent with the concomitant production of cellobiono-1,5-lactone. Analysis of the reaction filtrates indicated that glucose and arabinose were the only neutral sugars generated. These sugars are derived from the degradation of the cellobiose rather than resulting from modifications of the pulp. These results suggest that the action of cellobiose dehydrogenase results in the generation of hydroxyl radicals via Fenton's chemistry which subsequently results in the depolymerization of cellulose. This appears to be the mechanism whereby a substantial reduction in the degree of polymerization of the cellulose can be achieved without a significant release of sugar.
Full Text
The Full Text of this article is available as a PDF (187.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bao W., Renganathan V. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett. 1992 May 4;302(1):77–80. doi: 10.1016/0014-5793(92)80289-s. [DOI] [PubMed] [Google Scholar]
- Canevascini G., Borer P., Dreyer J. L. Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem. 1991 May 23;198(1):43–52. doi: 10.1111/j.1432-1033.1991.tb15984.x. [DOI] [PubMed] [Google Scholar]
- Coudray M. R., Canevascini G., Meier H. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem J. 1982 Apr 1;203(1):277–284. doi: 10.1042/bj2030277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALLIWELL G. CATALYTIC DECOMPOSITION OF CELLULOSE UNDER BIOLOGICAL CONDITIONS. Biochem J. 1965 Apr;95:35–40. doi: 10.1042/bj0950035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habu N., Samejima M., Dean J. F., Eriksson K. E. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1993 Jul 26;327(2):161–164. doi: 10.1016/0014-5793(93)80162-n. [DOI] [PubMed] [Google Scholar]
- Henriksson G., Johansson G., Pettersson G. Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta. 1993 Sep 13;1144(2):184–190. doi: 10.1016/0005-2728(93)90171-b. [DOI] [PubMed] [Google Scholar]
- Henriksson G., Pettersson G., Johansson G., Ruiz A., Uzcategui E. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem. 1991 Feb 26;196(1):101–106. doi: 10.1111/j.1432-1033.1991.tb15791.x. [DOI] [PubMed] [Google Scholar]
- Higham C. W., Gordon-Smith D., Dempsey C. E., Wood P. M. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium. FEBS Lett. 1994 Aug 29;351(1):128–132. doi: 10.1016/0014-5793(94)00847-7. [DOI] [PubMed] [Google Scholar]
- Koenigs J. W. Hydrogen peroxide and iron: a microbial cellulolytic system? Biotechnol Bioeng Symp. 1975;(5):151–159. [PubMed] [Google Scholar]
- Kremer S. M., Wood P. M. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem. 1992 Sep 15;208(3):807–814. doi: 10.1111/j.1432-1033.1992.tb17251.x. [DOI] [PubMed] [Google Scholar]
- Lehner D., Zipper P., Henriksson G., Pettersson G. Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta. 1996 Mar 7;1293(1):161–169. doi: 10.1016/0167-4838(95)00245-6. [DOI] [PubMed] [Google Scholar]
- Raices M., Paifer E., Cremata J., Montesino R., Ståhlberg J., Divne C., Szabó I. J., Henriksson G., Johansson G., Pettersson G. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett. 1995 Aug 7;369(2-3):233–238. doi: 10.1016/0014-5793(95)00758-2. [DOI] [PubMed] [Google Scholar]
- Roy B. P., Dumonceaux T., Koukoulas A. A., Archibald F. S. Purification and Characterization of Cellobiose Dehydrogenases from the White Rot Fungus Trametes versicolor. Appl Environ Microbiol. 1996 Dec;62(12):4417–4427. doi: 10.1128/aem.62.12.4417-4427.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westermark U., Eriksson K. E. Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand B. 1975;29(4):419–424. [PubMed] [Google Scholar]
- Wilson M. T., Hogg N., Jones G. D. Reactions of reduced cellobiose oxidase with oxygen. Is cellobiose oxidase primarily an oxidase? Biochem J. 1990 Aug 15;270(1):265–267. doi: 10.1042/bj2700265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood J. D., Wood P. M. Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim Biophys Acta. 1992 Feb 13;1119(1):90–96. doi: 10.1016/0167-4838(92)90239-a. [DOI] [PubMed] [Google Scholar]