Abstract
Peak emissions of NO and N(inf2)O are often observed after wetting of soil. The reactions to sudden changes in the aeration of cultures of nitrifying and denitrifying bacteria with respect to NO and N(inf2)O emissions were compared to obtain more information about the microbiological aspects of peak emissions. In continuous culture, the nitrifier Nitrosomonas europaea and the denitrifiers Alcaligenes eutrophus and Pseudomonas stutzeri were cultured at different levels of aeration (80 to 0% air saturation) and subjected to changes in aeration. The relative production of NO and N(inf2)O by N. europaea, as a percentage of the ammonium conversion, increased from 0.87 and 0.17%, respectively, at 80% air saturation to 2.32 and 0.78%, respectively, at 1% air saturation. At 0% air saturation, ammonium oxidation and N(inf2)O production ceased but NO production was enhanced. Coculturing of N. europaea with the nitrite oxidizer Nitrobacter winogradskyi strongly reduced the relative levels of NO and N(inf2)O production, probably as an effect of the lowered nitrite concentration. After lowering the aeration, N. europaea produced large short-lasting peaks of NO and N(inf2)O emissions in the presence but not in the absence of nitrite. A. eutrophus and P. stutzeri began to denitrify below 1% air saturation, with the former accumulating nitrite and N(inf2)O and the latter reducing nitrate almost completely to N(inf2). Transition of A. eutrophus and P. stutzeri from 80 to 0% air saturation resulted in transient maxima of denitrification intermediates. Such transient maxima were not observed after transition from 1 to 0%. Reduction of nitrate by A. eutrophus continued 48 h after the onset of the aeration, whereas N(inf2)O emission by P. stutzeri increased for only a short period. It was concluded that only in the presence of nitrite are nitrifiers able to dominate the NO and N(inf2)O emissions of soils shortly after a rainfall event.
Full Text
The Full Text of this article is available as a PDF (207.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson I. C., Poth M., Homstead J., Burdige D. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol. 1993 Nov;59(11):3525–3533. doi: 10.1128/aem.59.11.3525-3533.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann B., Snozzi M., Zehnder A. J., Van Der Meer J. R. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol. 1996 Aug;178(15):4367–4374. doi: 10.1128/jb.178.15.4367-4374.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrich S., Behrens D., Lebedeva E., Ludwig W., Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995 Jul;164(1):16–23. doi: 10.1007/BF02568729. [DOI] [PubMed] [Google Scholar]
- Goreau T. J., Kaplan W. A., Wofsy S. C., McElroy M. B., Valois F. W., Watson S. W. Production of NO(2) and N(2)O by Nitrifying Bacteria at Reduced Concentrations of Oxygen. Appl Environ Microbiol. 1980 Sep;40(3):526–532. doi: 10.1128/aem.40.3.526-532.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
- Körner H., Zumft W. G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol. 1989 Jul;55(7):1670–1676. doi: 10.1128/aem.55.7.1670-1676.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otte S., Grobben N. G., Robertson L. A., Jetten M. S., Kuenen J. G. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl Environ Microbiol. 1996 Jul;62(7):2421–2426. doi: 10.1128/aem.62.7.2421-2426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. S., Parsons L. L. Persistence of denitrifying enzyme activity in dried soils. Appl Environ Microbiol. 1985 Feb;49(2):316–320. doi: 10.1128/aem.49.2.316-320.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhagen F. J., Laanbroek H. J. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats. Appl Environ Microbiol. 1991 Nov;57(11):3255–3263. doi: 10.1128/aem.57.11.3255-3263.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]