Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3957–3964. doi: 10.1128/aem.63.10.3957-3964.1997

Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogeneous and Gradient Cultures

K D Hagen, D C Nelson
PMCID: PMC1389265  PMID: 16535709

Abstract

The marine Beggiatoa strains MS-81-6 and MS-81-1c are filamentous, gliding, colorless sulfur bacteria. They have traditionally been cultured in very limited quantities in sulfide gradient media, where they grow as chemolithoautotrophs, forming a thin horizontal plate well below the air-agar interface. There, the facultatively chemolithoautotrophic strain MS-81-6 quantitatively harvests the flux of sulfide diffusing from below and oxidizes it to sulfate by using oxygen as the electron acceptor. Only recently have these strains been cultivated in bulk in defined liquid media (K. D. Hagen and D. C. Nelson, Appl. Environ. Microbiol. 62:947-953, 1996). In the current study, the obligately chemolithoautotrophic strain MS-81-1c was shown to have, despite much greater storage of elemental sulfur, an apparent Y(infH)(inf(inf2))(infS) twice that of MS-81-6 when the two strains were grown in identical sulfide-limited gradient media. While the basis of this difference in energy conservation has not been established, differences in sulfur oxidation enzymes were noted. Strain MS-81-1c appeared to be able to oxidize sulfite by using either the adenosine phosphosulfate (APS) pathway or a sulfite:acceptor oxidoreductase. APS pathway enzymes (ATP sulfurylase and APS reductase) were present at relatively high and constant levels regardless of growth conditions, while the sulfite:acceptor oxidoreductase activity varied at least eightfold, with the highest activity produced in sulfide gradient medium. By contrast, strain MS-81-6 showed no detectable activity of the APS pathway enzymes and possessed a sulfite:acceptor oxidoreductase activity just sufficient to account for its observed rate of growth in sulfide gradient medium. Freshwater strain OH-75-2a showed activity and regulation of sulfite:acceptor oxidoreductase consistent with lithotrophic energy conservation, a feature not yet proven for any freshwater Beggiatoa strain.

Full Text

The Full Text of this article is available as a PDF (202.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Suzuki I. A study on the reaction mechanism of adenosine 5'-phosphosulfate reductase from Thiobacillus thioparus, an iron-sulfur flavoprotein. Can J Biochem. 1977 Jan;55(1):91–98. doi: 10.1139/o77-015. [DOI] [PubMed] [Google Scholar]
  2. Adair F. W. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans. J Bacteriol. 1966 Oct;92(4):899–904. doi: 10.1128/jb.92.4.899-904.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aminuddin M. Substrate level versus oxidative phosphorylation in the generation of ATP in Thiobacillus denitrificans. Arch Microbiol. 1980 Nov;128(1):19–25. doi: 10.1007/BF00422300. [DOI] [PubMed] [Google Scholar]
  4. Bowen T. J., Happold F. C., Taylor B. F. Studies on adenosine-5'-phosphosulphate reductase from Thiobacillus denitrificans. Biochim Biophys Acta. 1966 Jun 15;118(3):566–576. doi: 10.1016/s0926-6593(66)80098-x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Daley L. A., Renosto F., Segel I. H. ATP sulfurylase-dependent assays for inorganic pyrophosphate: applications to determining the equilibrium constant and reverse direction kinetics of the pyrophosphatase reaction, magnesium binding to orthophosphate, and unknown concentrations of pyrophosphate. Anal Biochem. 1986 Sep;157(2):385–395. doi: 10.1016/0003-2697(86)90642-1. [DOI] [PubMed] [Google Scholar]
  7. Hagen K. D., Nelson D. C. Organic carbon utilization by obligately and facultatively autotrophic beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microbiol. 1996 Mar;62(3):947–953. doi: 10.1128/aem.62.3.947-953.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hempfling W. P., Trudinger P. A. Purification and some properties of sulfite oxidase from Thiobacillus neapolitanus. Arch Mikrobiol. 1967;59(1):149–157. doi: 10.1007/BF00406326. [DOI] [PubMed] [Google Scholar]
  9. Jørgensen B. B., Revsbech N. P. Colorless Sulfur Bacteria, Beggiatoa spp. and Thiovulum spp., in O(2) and H(2)S Microgradients. Appl Environ Microbiol. 1983 Apr;45(4):1261–1270. doi: 10.1128/aem.45.4.1261-1270.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kelly D. P. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982 Sep 13;298(1093):499–528. doi: 10.1098/rstb.1982.0094. [DOI] [PubMed] [Google Scholar]
  11. Laue B. E., Nelson D. C. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol. 1994 Jun;176(12):3723–3729. doi: 10.1128/jb.176.12.3723-3729.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leyh T. S., Taylor J. C., Markham G. D. The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem. 1988 Feb 15;263(5):2409–2416. [PubMed] [Google Scholar]
  13. Lyric R. M., Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. I. Survey of enzymes and properties of sulfite: cytochrome c oxidoreductase. Can J Biochem. 1970 Mar;48(3):334–343. doi: 10.1139/o70-056. [DOI] [PubMed] [Google Scholar]
  14. Lyric R. M., Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. II. Properties of adenosine-5'-phosphosulfate reductase. Can J Biochem. 1970 Mar;48(3):344–354. doi: 10.1139/o70-057. [DOI] [PubMed] [Google Scholar]
  15. Nelson D. C., Castenholz R. W. Organic nutrition of Beggiatoa sp. J Bacteriol. 1981 Jul;147(1):236–247. doi: 10.1128/jb.147.1.236-247.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nelson D. C., Castenholz R. W. Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol. 1981 Jul;147(1):140–154. doi: 10.1128/jb.147.1.140-154.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nelson D. C., Jørgensen B. B., Revsbech N. P. Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients. Appl Environ Microbiol. 1986 Aug;52(2):225–233. doi: 10.1128/aem.52.2.225-233.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nelson D. C., Revsbech N. P., Jørgensen B. B. Microoxic-Anoxic Niche of Beggiatoa spp.: Microelectrode Survey of Marine and Freshwater Strains. Appl Environ Microbiol. 1986 Jul;52(1):161–168. doi: 10.1128/aem.52.1.161-168.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PECK H. D., Jr, DEACON T. E., DAVIDSON J. T. STUDIES ON ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE FROM DESULFOVIBRIO DESULFURICANS AND THIOBACILLUS THIOPARUS. I. THE ASSAY AND PURIFICATION. Biochim Biophys Acta. 1965 Mar 22;96:429–446. doi: 10.1016/0005-2787(65)90561-7. [DOI] [PubMed] [Google Scholar]
  20. Peck H. D. ADENOSINE 5'-PHOSPHOSULFATE AS AN INTERMEDIATE IN THE OXIDATION OF THIOSULFATE BY THIOBACILLUS THIOPARUS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1053–1057. doi: 10.1073/pnas.46.8.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Renosto F., Martin R. L., Borrell J. L., Nelson D. C., Segel I. H. ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm). Arch Biochem Biophys. 1991 Oct;290(1):66–78. doi: 10.1016/0003-9861(91)90592-7. [DOI] [PubMed] [Google Scholar]
  22. Seubert P. A., Renosto F., Knudson P., Segel I. H. Adenosinetriphosphate sulfurylase from Penicillium chrysogenum: steady-state kinetics of the forward and reverse reactions, alternative substrate kinetics, and equilibrium binding studies. Arch Biochem Biophys. 1985 Aug 1;240(2):509–523. doi: 10.1016/0003-9861(85)90057-8. [DOI] [PubMed] [Google Scholar]
  23. Sugio T., Katagiri T., Moriyama M., Zhèn Y. L., Inagaki K., Tano T. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans. Appl Environ Microbiol. 1988 Jan;54(1):153–157. doi: 10.1128/aem.54.1.153-157.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  25. Trüper H. G., Rogers L. A. Purification and properties of adenylyl sulfate reductase from the phototrophic sulfur bacterium, Thiocapsa roseopersicina. J Bacteriol. 1971 Dec;108(3):1112–1121. doi: 10.1128/jb.108.3.1112-1121.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES