Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3995–4000. doi: 10.1128/aem.63.10.3995-4000.1997

Overexpression of aflR Leads to Upregulation of Pathway Gene Transcription and Increased Aflatoxin Production in Aspergillus flavus

J E Flaherty, G A Payne
PMCID: PMC1389268  PMID: 16535712

Abstract

The aflatoxin biosynthetic pathway regulatory gene, aflR, encodes a putative 47-kDa protein containing a zinc cluster DNA binding motif. It is required for the transcription of all of the characterized aflatoxin pathway genes in both Aspergillus flavus and Aspergillus parasiticus. The objective of this study was to examine the effects of aflR overexpression on temporal gene expression, aflatoxin production, and nitrate inhibition of aflatoxin biosynthesis in A. flavus. An inducible expression construct was made by fusing the coding region of aflR to the promoter region of the A. flavus adh1 gene. This construct was transformed into A. flavus 656-2 (FGSC A1010), a strain mutated at the aflR locus. Strain 656-2 containing the adh1(p)::aflR construct had induced transcription of two early aflatoxin pathway genes, nor-1 and pksA, and produced wild-type concentrations of aflatoxin in a temporal pattern similar to that of wild-type strains of A. flavus. Strains 656-2 and 86-10 (FGSC A1009) an aflatoxigenic strain, were transformed with a construct containing the constitutive promoter gpdA driving aflR. Transformants of these strains constitutively expressed aflR, fas-1A, pksA, nor-1, and omtA but did not constitutively produce aflatoxin. Strain 86-10 containing the gpdA(p)::aflR construct produced 50 times more aflatoxin than 86-10, but the temporal pattern of aflatoxin production was the same as for 86-10, and aflatoxin production was also induced by sucrose. The addition of 10 g of nitrate per liter to sucrose low salts medium inhibited aflatoxin production by both strain 86-10 and a transformant of 86-10 containing the gpdA(p)::aflR construct, indicating that nitrate inhibition of aflatoxin biosynthesis does not occur solely at the level of aflR transcription. These studies show that constitutive overexpression of the pathway transcriptional regulatory gene aflR leads to higher transcript accumulation of pathway genes and increased aflatoxin production but that the initiation of aflatoxin biosynthesis is not solely regulated by the transcriptional activities of the biosynthetic pathway.

Full Text

The Full Text of this article is available as a PDF (769.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. W., Rubin P. L., Lee L. S., Chen P. N. Influence of trace elements and nitrogen sources on versicolorin production by a mutant strain of Aspergillus parasiticus. Mycopathologia. 1979 Dec 28;69(3):161–166. doi: 10.1007/BF00452829. [DOI] [PubMed] [Google Scholar]
  2. Brown D. W., Yu J. H., Kelkar H. S., Fernandes M., Nesbitt T. C., Keller N. P., Adams T. H., Leonard T. J. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418–1422. doi: 10.1073/pnas.93.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchanan R. L., Jones S. B., Gerasimowicz W. V., Zaika L. L., Stahl H. G., Ocker L. A. Regulation of aflatoxin biosynthesis: assessment of the role of cellular energy status as a regulator of the induction of aflatoxin production. Appl Environ Microbiol. 1987 Jun;53(6):1224–1231. doi: 10.1128/aem.53.6.1224-1231.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchanan R. L., Lewis D. F. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes. Appl Environ Microbiol. 1984 Aug;48(2):306–310. doi: 10.1128/aem.48.2.306-310.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang P. K., Cary J. W., Bhatnagar D., Cleveland T. E., Bennett J. W., Linz J. E., Woloshuk C. P., Payne G. A. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Oct;59(10):3273–3279. doi: 10.1128/aem.59.10.3273-3279.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang P. K., Cary J. W., Yu J., Bhatnagar D., Cleveland T. E. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol Gen Genet. 1995 Aug 21;248(3):270–277. doi: 10.1007/BF02191593. [DOI] [PubMed] [Google Scholar]
  7. Chang P. K., Ehrlich K. C., Yu J., Bhatnagar D., Cleveland T. E. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol. 1995 Jun;61(6):2372–2377. doi: 10.1128/aem.61.6.2372-2377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang P. K., Skory C. D., Linz J. E. Cloning of a gene associated with aflatoxin B1 biosynthesis in Aspergillus parasiticus. Curr Genet. 1992 Mar;21(3):231–233. doi: 10.1007/BF00336846. [DOI] [PubMed] [Google Scholar]
  9. Flaherty J. E., Weaver M. A., Payne G. A., Woloshuk C. P. A beta-glucuronidase reporter gene construct for monitoring aflatoxin biosynthesis in Aspergillus flavus. Appl Environ Microbiol. 1995 Jul;61(7):2482–2486. doi: 10.1128/aem.61.7.2482-2486.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gradisnik-Grapulin M., Legisa M. A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl Environ Microbiol. 1997 Jul;63(7):2844–2849. doi: 10.1128/aem.63.7.2844-2849.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hankinson O., Cove D. J. Regulation of the pentose phosphate pathway in the fungus Aspergillus nidulans. The effect of growth with nitrate. J Biol Chem. 1974 Apr 25;249(8):2344–2353. [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leaich L. L., Papa K. E. Aflatoxins in mutants of Aspergillus flavus. Mycopathol Mycol Appl. 1974 Apr 30;52(3):223–229. doi: 10.1007/BF02198747. [DOI] [PubMed] [Google Scholar]
  14. Lee B. N., Adams T. H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol. 1994 Oct;14(2):323–334. doi: 10.1111/j.1365-2958.1994.tb01293.x. [DOI] [PubMed] [Google Scholar]
  15. Liang S. H., Skory C. D., Linz J. E. Characterization of the function of the ver-1A and ver-1B genes, involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 1996 Dec;62(12):4568–4575. doi: 10.1128/aem.62.12.4568-4575.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahanti N., Bhatnagar D., Cary J. W., Joubran J., Linz J. E. Structure and function of fas-1A, a gene encoding a putative fatty acid synthetase directly involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 1996 Jan;62(1):191–195. doi: 10.1128/aem.62.1.191-195.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Niehaus W. G., Jr, Jiang W. P. Nitrate induces enzymes of the mannitol cycle and suppresses versicolorin synthesis in Aspergillus parasiticus. Mycopathologia. 1989 Sep;107(2-3):131–137. doi: 10.1007/BF00707550. [DOI] [PubMed] [Google Scholar]
  18. Payne G. A., Nystrom G. J., Bhatnagar D., Cleveland T. E., Woloshuk C. P. Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol. 1993 Jan;59(1):156–162. doi: 10.1128/aem.59.1.156-162.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prieto R., Woloshuk C. P. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Appl Environ Microbiol. 1997 May;63(5):1661–1666. doi: 10.1128/aem.63.5.1661-1666.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prieto R., Yousibova G. L., Woloshuk C. P. Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster. Appl Environ Microbiol. 1996 Oct;62(10):3567–3571. doi: 10.1128/aem.62.10.3567-3571.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Punt P. J., Zegers N. D., Busscher M., Pouwels P. H., van den Hondel C. A. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol. 1991 Jan;17(1):19–33. doi: 10.1016/0168-1656(91)90024-p. [DOI] [PubMed] [Google Scholar]
  22. Silva J. C., Minto R. E., Barry C. E., 3rd, Holland K. A., Townsend C. A. Isolation and characterization of the versicolorin B synthase gene from Aspergillus parasiticus. Expansion of the aflatoxin b1 biosynthetic gene cluster. J Biol Chem. 1996 Jun 7;271(23):13600–13608. doi: 10.1074/jbc.271.23.13600. [DOI] [PubMed] [Google Scholar]
  23. Skory C. D., Chang P. K., Linz J. E. Regulated expression of the nor-1 and ver-1 genes associated with aflatoxin biosynthesis. Appl Environ Microbiol. 1993 May;59(5):1642–1646. doi: 10.1128/aem.59.5.1642-1646.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trail F., Chang P. K., Cary J., Linz J. E. Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl Environ Microbiol. 1994 Nov;60(11):4078–4085. doi: 10.1128/aem.60.11.4078-4085.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trail F., Mahanti N., Linz J. Molecular biology of aflatoxin biosynthesis. Microbiology. 1995 Apr;141(Pt 4):755–765. doi: 10.1099/13500872-141-4-755. [DOI] [PubMed] [Google Scholar]
  26. Trail F., Mahanti N., Rarick M., Mehigh R., Liang S. H., Zhou R., Linz J. E. Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway. Appl Environ Microbiol. 1995 Jul;61(7):2665–2673. doi: 10.1128/aem.61.7.2665-2673.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Woloshuk C. P., Foutz K. R., Brewer J. F., Bhatnagar D., Cleveland T. E., Payne G. A. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol. 1994 Jul;60(7):2408–2414. doi: 10.1128/aem.60.7.2408-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Woloshuk C. P., Payne G. A. The alcohol dehydrogenase gene adh1 is induced in Aspergillus flavus grown on medium conducive to aflatoxin biosynthesis. Appl Environ Microbiol. 1994 Feb;60(2):670–676. doi: 10.1128/aem.60.2.670-676.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woloshuk C. P., Seip E. R., Payne G. A., Adkins C. R. Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus. Appl Environ Microbiol. 1989 Jan;55(1):86–90. doi: 10.1128/aem.55.1.86-90.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yu J. H., Butchko R. A., Fernandes M., Keller N. P., Leonard T. J., Adams T. H. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet. 1996 May;29(6):549–555. doi: 10.1007/BF02426959. [DOI] [PubMed] [Google Scholar]
  31. Yu J., Cary J. W., Bhatnagar D., Cleveland T. E., Keller N. P., Chu F. S. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Nov;59(11):3564–3571. doi: 10.1128/aem.59.11.3564-3571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu J., Chang P. K., Cary J. W., Bhatnagar D., Cleveland T. E. avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 1997 Apr;63(4):1349–1356. doi: 10.1128/aem.63.4.1349-1356.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES