Abstract
Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems. We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the genus Thermus, the genera Thermotoga and Thermosipho, and the Aquificales order. The temperature of dissociation of each probe was determined. Probe specificities to the target groups were demonstrated by whole-cell and dot blot hybridization against a collection of target and nontarget rRNAs. Whole-cell hybridizations with the specific probes were performed on cells extracted from hydrothermal vent chimneys. One of the samples contained cells that hybridized to the probe specific to genera Thermotoga and Thermosipho. No positive signals could be detected in the samples tested with the probes whose specificities encompassed either the genus Thermus or the thermophilic members of the genus Bacillus. However, when simultaneous hybridizations with the probe specific to the order Aquificales and a probe specific to the domain Bacteria (R. I. Amann, B. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl, Appl. Environ. Microbiol. 56:1919-1925, 1990) were performed on cells extracted from the top and exterior subsamples of chimneys, positive signals were obtained from morphologically diverse bacteria representing about 40% of the bacterial population. Since specificity studies also revealed that the bacterial probe did not hybridize with the members of the order Aquificales, the detected cells may therefore correspond to a new type of bacteria. One of the observed morphotypes was similar to that of a strictly anaerobic autotrophic sulfur-reducing strain that we isolated from the chimney samples. This work demonstrates that application of whole-cell hybridization with probes specific for different phylogenetic levels is a useful tool for detailed studies of hydrothermal vent microbial ecology.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. The oligonucleotide probe database. Appl Environ Microbiol. 1996 Oct;62(10):3557–3559. doi: 10.1128/aem.62.10.3557-3559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
- Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burggraf S., Mayer T., Amann R., Schadhauser S., Woese C. R., Stetter K. O. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1994 Sep;60(9):3112–3119. doi: 10.1128/aem.60.9.3112-3119.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golovacheva R. S., Loginova L. G., Salikhov T. A., Kolesnikov A. A., Zaitseva G. N. Novyi vid termofil'nykh batsill--Bacillus thermocatenulatus nov. sp. Mikrobiologiia. 1975 Mar-Apr;44(2):265–268. [PubMed] [Google Scholar]
- Harmsen H., Prieur D., Jeanthon C. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol. 1997 Jul;63(7):2876–2883. doi: 10.1128/aem.63.7.2876-2883.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinen U. J., Heinen W. Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol. 1972;82(1):1–23. doi: 10.1007/BF00424925. [DOI] [PubMed] [Google Scholar]
- Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol. 1995 Aug;164(2):91–97. [PubMed] [Google Scholar]
- Larionov V., Kouprina N., Karpova T. Stability of recombinant plasmids containing the ars sequence of yeast extrachromosomal rDNA in several strains of Saccharomyces cerevisiae. Gene. 1984 May;28(2):229–235. doi: 10.1016/0378-1119(84)90260-9. [DOI] [PubMed] [Google Scholar]
- Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. doi: 10.1093/nar/24.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raskin L., Stromley J. M., Rittmann B. E., Stahl D. A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol. 1994 Apr;60(4):1232–1240. doi: 10.1128/aem.60.4.1232-1240.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reysenbach A. L., Wickham G. S., Pace N. R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol. 1994 Jun;60(6):2113–2119. doi: 10.1128/aem.60.6.2113-2119.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voss T., Melchers K., Scheirle G., Schäfer K. P. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol. 1991 Jan;4(1):88–94. doi: 10.1165/ajrcmb/4.1.88. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]