Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4304–4312. doi: 10.1128/aem.63.11.4304-4312.1997

Contribution of the Regulatory Gene lemA to Field Fitness of Pseudomonas syringae pv. syringae

S S Hirano, E M Ostertag, S A Savage, L S Baker, D K Willis, C D Upper
PMCID: PMC1389283  PMID: 16535727

Abstract

In Pseudomonas syringae pv. syringae, lemA is required for brown spot lesion formation on snap bean and for production of syringomycin and extracellular proteases (E. M. Hrabak and D. K. Willis, J. Bacteriol. 174: 3011-3022, 1992; E. M. Hrabak and D. K. Willis, Mol. Plant-Microbe Interact. 6:368-375, 1993; D. K. Willis, E. M. Hrabak, J. J. Rich, T. M. Barta, S. E. Lindow, and N. J. Panopoulos, Mol. Plant-Microbe Interact. 3:149-156, 1990). The lemA mutant NPS3136 (lemA1::Tn5) was previously found to be indistinguishable from its pathogenic parent B728a in its ability to grow when infiltrated into bean leaves of plants maintained under controlled environmental conditions (Willis et al., Mol. Plant-Microbe Interact. 3:149-156, 1990). We compared population sizes of NPS3136 and B728aN (a Nal(supr) clone of wild-type B728a) in two field experiments to determine the effect of inactivation of lemA on the fitness of P. syringae pv. syringae. In one experiment, the bacterial strains were spray inoculated onto the foliage of 25-day-old bean plants. In the other, seeds were inoculated at the time of planting. In both experiments, the strains were inoculated individually and coinoculated in a 1:1 ratio. NPS3136 and B728aN achieved similar large population sizes on germinating seeds. However, in association with leaves, population sizes of NPS3136 were diminished relative to those of B728aN in both experiments. Thus, lemA contributed significantly to the fitness of P. syringae pv. syringae in association with bean leaves but not on germinating seeds under field conditions. When NPS3136 was coinoculated with B728aN, the mutant behaved as it did when inoculated alone. However, population sizes of B728aN in the coinoculation treatment were much lower than those when it was inoculated alone. Inactivation of the lemA gene appeared to have rendered the mutant suppressive to B728aN.

Full Text

The Full Text of this article is available as a PDF (228.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barta T. M., Kinscherf T. G., Willis D. K. Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J Bacteriol. 1992 May;174(9):3021–3029. doi: 10.1128/jb.174.9.3021-3029.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beattie G. A., Lindow S. E. Comparison of the Behavior of Epiphytic Fitness Mutants of Pseudomonas syringae under Controlled and Field Conditions. Appl Environ Microbiol. 1994 Oct;60(10):3799–3808. doi: 10.1128/aem.60.10.3799-3808.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beattie G. A., Lindow S. E. Survival, Growth, and Localization of Epiphytic Fitness Mutants of Pseudomonas syringae on Leaves. Appl Environ Microbiol. 1994 Oct;60(10):3790–3798. doi: 10.1128/aem.60.10.3790-3798.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corbell N., Loper J. E. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol. 1995 Nov;177(21):6230–6236. doi: 10.1128/jb.177.21.6230-6236.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grewal S. I., Han B., Johnstone K. Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. J Bacteriol. 1995 Aug;177(16):4658–4668. doi: 10.1128/jb.177.16.4658-4668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirano S. S., Baker L. S., Upper C. D. Raindrop Momentum Triggers Growth of Leaf-Associated Populations of Pseudomonas syringae on Field-Grown Snap Bean Plants. Appl Environ Microbiol. 1996 Jul;62(7):2560–2566. doi: 10.1128/aem.62.7.2560-2566.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirano S. S., Nordheim E. V., Arny D. C., Upper C. D. Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl Environ Microbiol. 1982 Sep;44(3):695–700. doi: 10.1128/aem.44.3.695-700.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hrabak E. M., Willis D. K. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol. 1992 May;174(9):3011–3020. doi: 10.1128/jb.174.9.3011-3020.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  10. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1562–1566. doi: 10.1073/pnas.89.5.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lenski R. E. Quantifying fitness and gene stability in microorganisms. Biotechnology. 1991;15:173–192. doi: 10.1016/b978-0-409-90199-3.50015-2. [DOI] [PubMed] [Google Scholar]
  12. Liao C. H., McCallus D. E., Fett W. F. Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Mol Plant Microbe Interact. 1994 May-Jun;7(3):391–400. doi: 10.1094/mpmi-7-0391. [DOI] [PubMed] [Google Scholar]
  13. Lindow S. E., Andersen G., Beattie G. A. Characteristics of Insertional Mutants of Pseudomonas syringae with Reduced Epiphytic Fitness. Appl Environ Microbiol. 1993 May;59(5):1593–1601. doi: 10.1128/aem.59.5.1593-1601.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindow S. E. Novel method for identifying bacterial mutants with reduced epiphytic fitness. Appl Environ Microbiol. 1993 May;59(5):1586–1592. doi: 10.1128/aem.59.5.1586-1592.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Natsch A., Keel C., Pfirter H. A., Haas D., Défago G. Contribution of the Global Regulator Gene gacA to Persistence and Dissemination of Pseudomonas fluorescens Biocontrol Strain CHA0 Introduced into Soil Microcosms. Appl Environ Microbiol. 1994 Jul;60(7):2553–2560. doi: 10.1128/aem.60.7.2553-2560.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rich J. J., Hirano S. S., Willis D. K. Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation. Appl Environ Microbiol. 1992 May;58(5):1440–1446. doi: 10.1128/aem.58.5.1440-1446.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rich J. J., Kinscherf T. G., Kitten T., Willis D. K. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol. 1994 Dec;176(24):7468–7475. doi: 10.1128/jb.176.24.7468-7475.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Willis D. K., Rich J. J., Kinscherf T. G., Kitten T. Genetic regulation in plant pathogenic pseudomonads. Genet Eng (N Y) 1994;16:167–193. [PubMed] [Google Scholar]
  19. Wilson M., Lindow S. E. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994 Dec;60(12):4468–4477. doi: 10.1128/aem.60.12.4468-4477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xu G. W., Gross D. C. Evaluation of the Role of Syringomycin in Plant Pathogenesis by Using Tn5 Mutants of Pseudomonas syringae pv. syringae Defective in Syringomycin Production. Appl Environ Microbiol. 1988 Jun;54(6):1345–1353. doi: 10.1128/aem.54.6.1345-1353.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES