Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4385–4391. doi: 10.1128/aem.63.11.4385-4391.1997

Reduction of Hexavalent Uranium from Organic Complexes by Sulfate- and Iron-Reducing Bacteria

R Ganesh, K G Robinson, G D Reed, G S Sayler
PMCID: PMC1389285  PMID: 16535729

Abstract

The influence of organic-hexavalent-uranium [U(VI)] complexation on U(VI) reduction by a sulfate-reducing bacterium (Desulfovibrio desulfuricans) and an iron-reducing bacterium (Shewanella alga) was evaluated. Four aliphatic ligands (acetate, malonate, oxalate, and citrate) and an aromatic ligand (tiron [4,5-dihydroxy-1,3-benzene disulfonic acid]) were used to study complexed-uranium bioavailability. The trends in uranium reduction varied with the nature and the amount of U(VI)-organic complex formed and the type of bacteria present. D. desulfuricans rapidly reduced uranium from a monodentate aliphatic (acetate) complex. However, reduction from multidentate aliphatic complexes (malonate, oxalate, and citrate) was slower. A decrease in the amount of organic-U(VI) complex in solution significantly increased the rate of reduction. S. alga reduced uranium more rapidly from multidentate aliphatic complexes than from monodentate aliphatic complexes. The rate of reduction decreased with a decrease in the amount of multidentate complexes present. Uranium from an aromatic (tiron) complex was readily available for reduction by D. desulfuricans, while an insignificant level of U(VI) from the tiron complex was reduced by S. alga. These results indicate that selection of bacteria for rapid uranium reduction will depend on the organic composition of waste streams.

Full Text

The Full Text of this article is available as a PDF (170.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergsma J., Konings W. N. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur J Biochem. 1983 Jul 15;134(1):151–156. doi: 10.1111/j.1432-1033.1983.tb07545.x. [DOI] [PubMed] [Google Scholar]
  2. Caccavo F., Blakemore R. P., Lovley D. R. A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol. 1992 Oct;58(10):3211–3216. doi: 10.1128/aem.58.10.3211-3216.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colleran E., Finnegan S., Lens P. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek. 1995;67(1):29–46. doi: 10.1007/BF00872194. [DOI] [PubMed] [Google Scholar]
  4. Emery T. Fungal ornithine esterases: relationship to iron transport. Biochemistry. 1976 Jun 29;15(13):2723–2728. doi: 10.1021/bi00658a002. [DOI] [PubMed] [Google Scholar]
  5. Firestone M. K., Tiedje J. M. Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Appl Microbiol. 1975 Jun;29(6):758–764. doi: 10.1128/am.29.6.758-764.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Francis A. J., Dodge C. J. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl Environ Microbiol. 1993 Jan;59(1):109–113. doi: 10.1128/aem.59.1.109-113.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huyer M., Page W. J. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+. J Bacteriol. 1989 Jul;171(7):4031–4037. doi: 10.1128/jb.171.7.4031-4037.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knight V, V, Caccavo F, Wudyka S, Blakemore R. Synergistic iron reduction and citrate dissimilation by Shewanella alga and Aeromonas veronii. Arch Microbiol. 1996 Oct 17;166(4):269–274. doi: 10.1007/s002030050383. [DOI] [PubMed] [Google Scholar]
  9. Lovley D. R., Phillips E. J. Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol. 1992 Mar;58(3):850–856. doi: 10.1128/aem.58.3.850-856.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lovley D. R., Widman P. K., Woodward J. C., Phillips E. J. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol. 1993 Nov;59(11):3572–3576. doi: 10.1128/aem.59.11.3572-3576.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lovley D. R., Woodward J. C., Chapelle F. H. Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms. Appl Environ Microbiol. 1996 Jan;62(1):288–291. doi: 10.1128/aem.62.1.288-291.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macaskie L. E. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol. 1991;11(1):41–112. doi: 10.3109/07388559109069183. [DOI] [PubMed] [Google Scholar]
  13. Madsen E. L., Alexander M. Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Appl Environ Microbiol. 1985 Aug;50(2):342–349. doi: 10.1128/aem.50.2.342-349.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ROTHSTEIN A., MEIER R., HURWITZ L. The relationship of the cell surface to metabolism. V. The role of uranium-complexing loci of yeast in metabolism. J Cell Physiol. 1951 Feb;37(1):57–81. doi: 10.1002/jcp.1030370105. [DOI] [PubMed] [Google Scholar]
  15. Roden E. E., Lovley D. R. Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993 Mar;59(3):734–742. doi: 10.1128/aem.59.3.734-742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suflita J. M., Robinson J. A., Tiedje J. M. Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl Environ Microbiol. 1983 May;45(5):1466–1473. doi: 10.1128/aem.45.5.1466-1473.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tuovinen O. H., Kelly D. P. Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Arch Mikrobiol. 1974 Feb 1;95(2):153–164. [PubMed] [Google Scholar]
  18. Van der Rest M. E., Abee T., Molenaar D., Konings W. N. Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae. Eur J Biochem. 1991 Jan 1;195(1):71–77. doi: 10.1111/j.1432-1033.1991.tb15677.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES