Abstract
The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.
Full Text
The Full Text of this article is available as a PDF (179.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bao W., Fukushima Y., Jensen K. A., Jr, Moen M. A., Hammel K. E. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 1994 Nov 14;354(3):297–300. doi: 10.1016/0014-5793(94)01146-x. [DOI] [PubMed] [Google Scholar]
- Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
- Datta A., Bettermann A., Kirk T. K. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol. 1991 May;57(5):1453–1460. doi: 10.1128/aem.57.5.1453-1460.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggert C., Temp U., Dean J. F., Eriksson K. E. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 1996 Aug 5;391(1-2):144–148. doi: 10.1016/0014-5793(96)00719-3. [DOI] [PubMed] [Google Scholar]
- Hammel K. E., Mozuch M. D., Jensen K. A., Jr, Kersten P. J. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry. 1994 Nov 15;33(45):13349–13354. doi: 10.1021/bi00249a022. [DOI] [PubMed] [Google Scholar]
- Jensen K. A., Bao W., Kawai S., Srebotnik E., Hammel K. E. Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase. Appl Environ Microbiol. 1996 Oct;62(10):3679–3686. doi: 10.1128/aem.62.10.3679-3686.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai S., Jensen K. A., Jr, Bao W., Hammel K. E. New polymeric model substrates for the study of microbial ligninolysis. Appl Environ Microbiol. 1995 Sep;61(9):3407–3414. doi: 10.1128/aem.61.9.3407-3414.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk T. K., Connors W. J., Bleam R. D., Hackett W. F., Zeikus J. G. Preparation and microbial decomposition of synthetic [14C]ligins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515–2519. doi: 10.1073/pnas.72.7.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
- Kirk T. K., Tien M., Kersten P. J., Mozuch M. D., Kalyanaraman B. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Biochem J. 1986 May 15;236(1):279–287. doi: 10.1042/bj2360279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orth A. B., Royse D. J., Tien M. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol. 1993 Dec;59(12):4017–4023. doi: 10.1128/aem.59.12.4017-4023.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Périé F. H., Gold M. H. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol. 1991 Aug;57(8):2240–2245. doi: 10.1128/aem.57.8.2240-2245.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajakumar S., Gaskell J., Cullen D., Lobos S., Karahanian E., Vicuna R. Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol. 1996 Jul;62(7):2660–2663. doi: 10.1128/aem.62.7.2660-2663.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüttimann-Johnson C., Salas L., Vicuña R., Kirk T. K. Extracellular Enzyme Production and Synthetic Lignin Mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol. 1993 Jun;59(6):1792–1797. doi: 10.1128/aem.59.6.1792-1797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srebotnik E., Jensen K. A., Jr, Hammel K. E. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12794–12797. doi: 10.1073/pnas.91.26.12794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srebotnik E., Messner K. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol. 1994 Apr;60(4):1383–1386. doi: 10.1128/aem.60.4.1383-1386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]