Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4479–4484. doi: 10.1128/aem.63.11.4479-4484.1997

Phenotypic and Genotypic Comparison of Symbiotic and Free-Living Cyanobacteria from a Single Field Site

N J West, D G Adams
PMCID: PMC1389290  PMID: 16535734

Abstract

PCR amplification techniques were used to compare cyanobacterial symbionts from a cyanobacterium-bryophyte symbiosis and free-living cyanobacteria from the same field site. Thirty-one symbiotic cyanobacteria were isolated from the hornwort Phaeoceros sp. at several closely spaced locations, and 40 free-living cyanobacteria were isolated from the immediate vicinity of the same plants. One of the symbiotic isolates was a species of Calothrix, a genus not previously known to form bryophyte symbioses, and the remainder were Nostoc spp. Of the free-living strains, two were Calothrix spp., three were Chlorogloeopsis spp. and the rest were Nostoc spp. All of the symbiotic and all but one of the free-living strains were able to reconstitute the symbiosis with axenic cultures of both Phaeoceros and the liverwort Blasia sp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the regions flanking the 16S-23S rRNA internal transcribed spacer. With one exception, the two techniques produced complementary results and confirmed for the first time that a diversity of symbiotic cyanobacteria infect Phaeoceros in the field. Symbionts from adjacent colonies were different as often as they were the same, showing that the same thallus could be infected with many different cyanobacterial strains. Strains found to be identical by the techniques employed here were often found as symbionts in different thalli at the same locale but were never found free-living. Only one of the free-living strains, and none of the symbiotic strains, was found at more than one sample site, implying a highly localized distribution of strains.

Full Text

The Full Text of this article is available as a PDF (593.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. G. Isolation and restriction analysis of DNA from heterocysts and vegetative cells of cyanobacteria. J Gen Microbiol. 1988 Nov;134(11):2943–2949. doi: 10.1099/00221287-134-11-2943. [DOI] [PubMed] [Google Scholar]
  2. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. The oligonucleotide probe database. Appl Environ Microbiol. 1996 Oct;62(10):3557–3559. doi: 10.1128/aem.62.10.3557-3559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991 Aug;1(1):51–56. doi: 10.1101/gr.1.1.51. [DOI] [PubMed] [Google Scholar]
  4. Caetano-Anollés G. MAAP: a versatile and universal tool for genome analysis. Plant Mol Biol. 1994 Sep;25(6):1011–1026. doi: 10.1007/BF00014674. [DOI] [PubMed] [Google Scholar]
  5. Campbell E. L., Meeks J. C. Characteristics of Hormogonia Formation by Symbiotic Nostoc spp. in Response to the Presence of Anthoceros punctatus or Its Extracellular Products. Appl Environ Microbiol. 1989 Jan;55(1):125–131. doi: 10.1128/aem.55.1.125-131.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen M. F., Wallis J. G., Campbell E. L., Meeks J. C. Transposon mutagenesis of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives. Microbiology. 1994 Dec;140(Pt 12):3233–3240. doi: 10.1099/13500872-140-12-3233. [DOI] [PubMed] [Google Scholar]
  7. Coutinho H. L., Handley B. A., Kay H. E., Stevenson L., Beringer J. E. The effect of colony age on PCR fingerprinting. Lett Appl Microbiol. 1993 Dec;17(6):282–284. doi: 10.1111/j.1472-765x.1993.tb01467.x. [DOI] [PubMed] [Google Scholar]
  8. Dams E., Hendriks L., Van de Peer Y., Neefs J. M., Smits G., Vandenbempt I., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1988;16 (Suppl):r87–173. doi: 10.1093/nar/16.suppl.r87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dubbs J. M., Bryant D. A. Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena species PCC7409. Mol Microbiol. 1991 Dec;5(12):3073–3085. doi: 10.1111/j.1365-2958.1991.tb01867.x. [DOI] [PubMed] [Google Scholar]
  10. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  11. Eskew D. L., Caetano-Anollés G., Bassam B. J., Gresshoff P. M. DNA amplification fingerprinting of the Azolla-Anabaena symbiosis. Plant Mol Biol. 1993 Jan;21(2):363–373. doi: 10.1007/BF00019951. [DOI] [PubMed] [Google Scholar]
  12. Gutell R. R., Fox G. E. A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res. 1988;16 (Suppl):r175–r269. doi: 10.1093/nar/16.suppl.r175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jensen M. A., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 1993 Dec;3(3):186–194. doi: 10.1101/gr.3.3.186. [DOI] [PubMed] [Google Scholar]
  14. Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindblad P., Haselkorn R., Bergman B., Nierzwicki-Bauer S. A. Comparison of DNA restriction fragment length polymorphisms of Nostoc strains in and from cycads. Arch Microbiol. 1989;152(1):20–24. doi: 10.1007/BF00447006. [DOI] [PubMed] [Google Scholar]
  16. Meeks J. C., Joseph C. M., Haselkorn R. Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol. 1988 May;150(1):61–71. doi: 10.1007/BF00409719. [DOI] [PubMed] [Google Scholar]
  17. Muralidharan K., Wakeland E. K. Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. Biotechniques. 1993 Mar;14(3):362–364. [PubMed] [Google Scholar]
  18. Navarro E., Simonet P., Normand P., Bardin R. Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol. 1992;157(2):107–115. doi: 10.1007/BF00245277. [DOI] [PubMed] [Google Scholar]
  19. Plazinski J., Zheng Q., Taylor R., Croft L., Rolfe B. G., Gunning B. E. DNA probes show genetic variation in cyanobacterial symbionts of the azolla fern and a closer relationship to free-living nostoc strains than to free-living anabaena strains. Appl Environ Microbiol. 1990 May;56(5):1263–1270. doi: 10.1128/aem.56.5.1263-1270.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Welsh J., Pretzman C., Postic D., Saint Girons I., Baranton G., McClelland M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int J Syst Bacteriol. 1992 Jul;42(3):370–377. doi: 10.1099/00207713-42-3-370. [DOI] [PubMed] [Google Scholar]
  21. Wenger R. H., Nielsen P. J. Reannealing of artificial heteroduplexes generated during PCR-mediated isotyping. Trends Genet. 1991 Jun;7(6):178–178. doi: 10.1016/0168-9525(91)90430-x. [DOI] [PubMed] [Google Scholar]
  22. Wilmotte A., Neefs J. M., De Wachter R. Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. Microbiology. 1994 Aug;140(Pt 8):2159–2164. doi: 10.1099/13500872-140-8-2159. [DOI] [PubMed] [Google Scholar]
  23. Zimmerman W. J., Rosen B. H. Cyanobiont diversity within and among cycads of one field site. Can J Microbiol. 1992 Dec;38(12):1324–1328. doi: 10.1139/m92-218. [DOI] [PubMed] [Google Scholar]
  24. de Lorimier R., Bryant D. A., Porter R. D., Liu W. Y., Jay E., Stevens S. E., Jr Genes for the alpha and beta subunits of phycocyanin. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7946–7950. doi: 10.1073/pnas.81.24.7946. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES