Abstract
We describe a procedure to measure the cell sizes of pelagic bacteria after determinative hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes. Our approach is based on established image analysis techniques modified for objects simultaneously stained with two fluorescent dyes. It allows the estimation of biomass and cell size distribution and the morphological characterization of different bacterial taxa in plankton samples. The protocol was tested in a study of the bacterioplankton community of a high mountain lake during and after the ice break period. Cells that hybridized with a probe for the domain Bacteria accounted for 70% of the bacterial abundance (range, 49 to 83%) as determined by 4(prm1),6(prm1)-diamidino-2-phenylindole staining (K. G. Porter and Y. S. Feig, Limnol. Oceanogr. 25:943-948, 1980), but for >85% of the total biomass (range, 78 to 99%). The size distribution for members of the beta subclass of the Proteobacteria shifted toward larger cells and clearly distinguished this group from the total bacterial assemblage. In the surface water layer beneath the winter cover, bacteria belonging to the beta 1 subgroup constituted about one-half of the beta subclass abundance. The mean cell volume of the beta 1 subgroup bacteria was significantly less than that of the beta subclass proteobacteria, and the beta 1 subgroup accounted for less than 30% of the total beta subclass biovolume. Two weeks later, the biovolume of the beta Proteobacteria had decreased to the level of the beta 1 subgroup, and both the biovolume size distributions and cell morphologies of the beta Proteobacteria and the beta 1 subgroup were very similar. We could thus quantify the disappearance of large, morphologically distinct beta subclass proteobacteria which were not members of the beta 1 subgroup during the ice break period. Our results demonstrate that changes in biovolumes and cell size distributions of different bacterial taxa, and eventually of individual populations, reveal hitherto unknown processes within aquatic bacterial assemblages and may open new perspectives for the study of microbial food webs.
Full Text
The Full Text of this article is available as a PDF (177.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfreider A., Pernthaler J., Amann R., Sattler B., Glockner F., Wille A., Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol. 1996 Jun;62(6):2138–2144. doi: 10.1128/aem.62.6.2138-2144.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K. H. In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol. 1996 Jun;178(12):3496–3500. doi: 10.1128/jb.178.12.3496-3500.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjørnsen P. K. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986 Jun;51(6):1199–1204. doi: 10.1128/aem.51.6.1199-1204.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjørnsen P. K., Riemann B., Pock-Steen J., Nielsen T. G., Horsted S. J. Regulation of bacterioplankton production and cell volume in a eutrophic estuary. Appl Environ Microbiol. 1989 Jun;55(6):1512–1518. doi: 10.1128/aem.55.6.1512-1518.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloem J., Veninga M., Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995 Mar;61(3):926–936. doi: 10.1128/aem.61.3.926-936.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boye M., Ahl T., Molin S. Application of a strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment. Appl Environ Microbiol. 1995 Apr;61(4):1384–1390. doi: 10.1128/aem.61.4.1384-1390.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
- Felip M., Sattler B., Psenner R., Catalan J. Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol. 1995 Jun;61(6):2394–2401. doi: 10.1128/aem.61.6.2394-2401.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
- Hofle M. G., Brettar I. Genotyping of heterotrophic bacteria from the central baltic sea by use of low-molecular-weight RNA profiles. Appl Environ Microbiol. 1996 Apr;62(4):1383–1390. doi: 10.1128/aem.62.4.1383-1390.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karner M., Fuhrman J. A. Determination of Active Marine Bacterioplankton: a Comparison of Universal 16S rRNA Probes, Autoradiography, and Nucleoid Staining. Appl Environ Microbiol. 1997 Apr;63(4):1208–1213. doi: 10.1128/aem.63.4.1208-1213.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moller S., Kristensen C. S., Poulsen L. K., Carstensen J. M., Molin S. Bacterial growth on surfaces: automated image analysis for quantification of growth rate-related parameters. Appl Environ Microbiol. 1995 Feb;61(2):741–748. doi: 10.1128/aem.61.2.741-748.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993 Mar;59(3):695–700. doi: 10.1128/aem.59.3.695-700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pernthaler J., Posch T., Simek K., Vrba J., Amann R., Psenner R. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl Environ Microbiol. 1997 Feb;63(2):596–601. doi: 10.1128/aem.63.2.596-601.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posch T., Pernthaler J., Alfreider A., Psenner R. Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis. Appl Environ Microbiol. 1997 Mar;63(3):867–873. doi: 10.1128/aem.63.3.867-873.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsing N. B., Fossing H., Ferdelman T. G., Andersen F., Thamdrup B. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol. 1996 Apr;62(4):1391–1404. doi: 10.1128/aem.62.4.1391-1404.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sieracki M. E., Johnson P. W., Sieburth J. M. Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microbiol. 1985 Apr;49(4):799–810. doi: 10.1128/aem.49.4.799-810.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sieracki M. E., Reichenbach S. E., Webb K. L. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol. 1989 Nov;55(11):2762–2772. doi: 10.1128/aem.55.11.2762-2772.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simek K., Chrzanowski T. H. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol. 1992 Nov;58(11):3715–3720. doi: 10.1128/aem.58.11.3715-3720.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simek K., Vrba J., Pernthaler J., Posch T., Hartman P., Nedoma J., Psenner R. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol. 1997 Feb;63(2):587–595. doi: 10.1128/aem.63.2.587-595.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommaruga R., Psenner R. Permanent presence of grazing-resistant bacteria in a hypertrophic lake. Appl Environ Microbiol. 1995 Sep;61(9):3457–3459. doi: 10.1128/aem.61.9.3457-3459.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viles C. L., Sieracki M. E. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy. Appl Environ Microbiol. 1992 Feb;58(2):584–592. doi: 10.1128/aem.58.2.584-592.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss P., Schweitzer B., Amann R., Simon M. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow). Appl Environ Microbiol. 1996 Jun;62(6):1998–2005. doi: 10.1128/aem.62.6.1998-2005.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whiteley A. S., O'Donnell A. G., Macnaughton S. J., Barer M. R. Cytochemical colocalization and quantitation of phenotypic and genotypic characteristics in individual bacterial cells. Appl Environ Microbiol. 1996 Jun;62(6):1873–1879. doi: 10.1128/aem.62.6.1873-1879.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
