Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4914–4919. doi: 10.1128/aem.63.12.4914-4919.1997

Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR-Restriction Fragment Length Polymorphism Profiling

K D Bruce
PMCID: PMC1389310  PMID: 16535754

Abstract

Bacterial mer (mercury resistance) gene subclasses in mercury-polluted and pristine natural environments have been profiled by Fluorescent-PCR-restriction fragment length polymorphism (FluRFLP). For FluRFLP, PCR products were amplified from individual mer operons in mercury-resistant bacteria and from DNA isolated directly from bacteria in soil and sediment samples. The primers used to amplify DNA were designed from consensus sequences of the major subclasses of archetypal gram-negative mer operons within Tn501, Tn21, pDU1358, and pKLH2. Two independent PCRs were used to amplify two regions of different lengths (merRT(Delta)P [ca. 1 kb] and merR [ca. 0.4 kb]) starting at the same position in merR. The oligonucleotide primer common to both reactions (FluRX) was labelled at the 5(prm1) end with green (TET) fluorescent dye. Analysis of the mer sequences within databases indicated that the major subclasses could be differentiated on the basis of the length from FluRX to the first FokI restriction endonuclease site. The amplified PCR products were digested with FokI restriction endonuclease, with the restriction digest fragments resolved on an automated DNA sequencing machine which detected only those bands labelled with the fluorescent dye. For each of the individual mer operon sources examined, this single peak (in bases) position was observed in separate digests of either amplified region. These peak positions were as predicted on the basis of DNA sequence. mer PCR products amplified from DNA extracted directly from soil and sediment bacteria were studied in order to determine the profiles of the major mer subclasses present in each natural environment. In addition to peaks of the expected sizes, extra peaks were observed which were not predicted on the basis of DNA sequence. Those appearing in the restriction endonuclease digests of both study regions were presumed to be novel mer types. Genetic heterogeneity within and between mercury-polluted and pristine sites has been studied by this technique. Profiles generated were highly similar for samples taken within the same soil type. The profiles, however, changed markedly on crossing from one soil type to another, with gradients of the different groupings of mer genes identified.

Full Text

The Full Text of this article is available as a PDF (505.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K. H. In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol. 1996 Jun;178(12):3496–3500. doi: 10.1128/jb.178.12.3496-3500.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barkay T., Liebert C., Gillman M. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl Environ Microbiol. 1989 Jun;55(6):1574–1577. doi: 10.1128/aem.55.6.1574-1577.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrineau P., Gilbert P., Jackson W. J., Jones C. S., Summers A. O., Wisdom S. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J Mol Appl Genet. 1984;2(6):601–619. [PubMed] [Google Scholar]
  5. Brown N. L., Ford S. J., Pridmore R. D., Fritzinger D. C. Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry. 1983 Aug 16;22(17):4089–4095. doi: 10.1021/bi00286a015. [DOI] [PubMed] [Google Scholar]
  6. Bruce K. D., Hiorns W. D., Hobman J. L., Osborn A. M., Strike P., Ritchie D. A. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol. 1992 Oct;58(10):3413–3416. doi: 10.1128/aem.58.10.3413-3416.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruce K. D., Osborn A. M., Pearson A. J., Strike P., Ritchie D. A. Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria. Mol Ecol. 1995 Oct;4(5):605–612. doi: 10.1111/j.1365-294x.1995.tb00260.x. [DOI] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garland J. L., Mills A. L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol. 1991 Aug;57(8):2351–2359. doi: 10.1128/aem.57.8.2351-2359.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Griffin H. G., Foster T. J., Silver S., Misra T. K. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc Natl Acad Sci U S A. 1987 May;84(10):3112–3116. doi: 10.1073/pnas.84.10.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holt R. J., Strike P., Bruce K. D. Phylogenetic analysis of tnpR genes in mercury resistant soil bacteria: the relationship between DNA sequencing and RFLP typing approaches. FEMS Microbiol Lett. 1996 Oct 15;144(1):95–102. doi: 10.1111/j.1574-6968.1996.tb08514.x. [DOI] [PubMed] [Google Scholar]
  12. Jobling M. G., Peters S. E., Ritchie D. A. Restriction pattern and polypeptide homology among plasmid-borne mercury resistance determinants. Plasmid. 1988 Sep;20(2):106–112. doi: 10.1016/0147-619x(88)90013-3. [DOI] [PubMed] [Google Scholar]
  13. Kholodii G. Y., Gorlenko Z., Lomovskaya O. L., Mindlin S. Z., Yurieva O. V., Nikiforov V. G. Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid. 1993 Nov;30(3):303–308. doi: 10.1006/plas.1993.1064. [DOI] [PubMed] [Google Scholar]
  14. Levitt R. C., Kiser M. B., Dragwa C., Jedlicka A. E., Xu J., Meyers D. A., Hudson J. R. Fluorescence-based resource for semiautomated genomic analyses using microsatellite markers. Genomics. 1994 Nov 15;24(2):361–365. doi: 10.1006/geno.1994.1628. [DOI] [PubMed] [Google Scholar]
  15. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol. 1995 Sep;164(3):165–172. doi: 10.1007/BF02529967. [DOI] [PubMed] [Google Scholar]
  16. Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993 Mar;59(3):695–700. doi: 10.1128/aem.59.3.695-700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev. 1997 Apr;19(4):239–262. doi: 10.1111/j.1574-6976.1997.tb00300.x. [DOI] [PubMed] [Google Scholar]
  18. Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl Environ Microbiol. 1993 Dec;59(12):4024–4030. doi: 10.1128/aem.59.12.4024-4030.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rochelle Paul A., Wetherbee Mary K., Olson Betty H. Distribution of DNA Sequences Encoding Narrow- and Broad-Spectrum Mercury Resistance. Appl Environ Microbiol. 1991 Jun;57(6):1581–1589. doi: 10.1128/aem.57.6.1581-1589.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  21. Silver S., Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. doi: 10.1128/mr.56.1.195-228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Suzuki M. T., Giovannoni S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996 Feb;62(2):625–630. doi: 10.1128/aem.62.2.625-630.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wawer C., Muyzer G. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol. 1995 Jun;61(6):2203–2210. doi: 10.1128/aem.61.6.2203-2210.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES