Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4961–4964. doi: 10.1128/aem.63.12.4961-4964.1997

Effect of Chlorinated Ethene Conversion on Viability and Activity of Methylosinus trichosporium OB3b

Vlie J Van Hylckama, W De Koning, D B Janssen
PMCID: PMC1389313  PMID: 16535757

Abstract

The effect of transformation of chlorinated ethenes on the cell viability of Methylosinus trichosporium OB3b was investigated. A comparison of the loss of viability with the decrease in transformation rates showed that for the monooxygenase-mediated transformation of all chlorinated ethenes except vinyl chloride the decrease in cell viability was the predominant toxic effect.

Full Text

The Full Text of this article is available as a PDF (141.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Cohen L., McCarty P. L. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol. 1991 Jan;57(1):228–235. doi: 10.1128/aem.57.1.228-235.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arciero D., Vannelli T., Logan M., Hooper A. B. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun. 1989 Mar 15;159(2):640–643. doi: 10.1016/0006-291x(89)90042-9. [DOI] [PubMed] [Google Scholar]
  3. Chang H. L., Alvarez-Cohen L. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl Environ Microbiol. 1996 Sep;62(9):3371–3377. doi: 10.1128/aem.62.9.3371-3377.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiStefano T. D., Gossett J. M., Zinder S. H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol. 1991 Aug;57(8):2287–2292. doi: 10.1128/aem.57.8.2287-2292.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dobbins D. C., Peltola J., Kustritz J. M., Chresand T. J., Preston J. C. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater. J Air Waste Manag Assoc. 1995 Jan;45(1):12–19. doi: 10.1080/10473289.1995.10467335. [DOI] [PubMed] [Google Scholar]
  6. Fitch M. W., Speitel G. E., Georgiou G. Degradation of Trichloroethylene by Methanol-Grown Cultures of Methylosinus trichosporium OB3b PP358. Appl Environ Microbiol. 1996 Mar;62(3):1124–1128. doi: 10.1128/aem.62.3.1124-1128.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  8. Henry S. M., Grbić-Galić D. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl Environ Microbiol. 1991 Jan;57(1):236–244. doi: 10.1128/aem.57.1.236-244.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koh S. C., Bowman J. P., Sayler G. S. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. 1993 Apr;59(4):960–967. doi: 10.1128/aem.59.4.960-967.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oldenhuis R., Oedzes J. Y., van der Waarde J. J., Janssen D. B. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol. 1991 Jan;57(1):7–14. doi: 10.1128/aem.57.1.7-14.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oldenhuis R., Vink R. L., Janssen D. B., Witholt B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol. 1989 Nov;55(11):2819–2826. doi: 10.1128/aem.55.11.2819-2826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Phelps T. J., Niedzielski J. J., Schram R. M., Herbes S. E., White D. C. Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. Appl Environ Microbiol. 1990 Jun;56(6):1702–1709. doi: 10.1128/aem.56.6.1702-1709.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tsien H. C., Brusseau G. A., Hanson R. S., Waclett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1989 Dec;55(12):3155–3161. doi: 10.1128/aem.55.12.3155-3161.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol. 1985 May;49(5):1080–1083. doi: 10.1128/aem.49.5.1080-1083.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van Hylckama V. J., de Koning W., Janssen D. B. Transformation Kinetics of Chlorinated Ethenes by Methylosinus trichosporium OB3b and Detection of Unstable Epoxides by On-Line Gas Chromatography. Appl Environ Microbiol. 1996 Sep;62(9):3304–3312. doi: 10.1128/aem.62.9.3304-3312.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES