Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4982–4985. doi: 10.1128/aem.63.12.4982-4985.1997

Dechlorination of Chloroethenes Is Inhibited by 2-Bromoethanesulfonate in the Absence of Methanogens

F E Loffler, K M Ritalahti, J M Tiedje
PMCID: PMC1389315  PMID: 16535759

Abstract

2-Bromoethanesulfonate (BES) inhibited the reductive dechlorination of chloroethenes in several sediment-free enrichment cultures in the absence of methanogenic archaea. Archaeon-specific PCR primers confirmed the absence of methanogens in the enrichment cultures. BES should not be used to attribute dechlorination activities to methanogens.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Wolfe R. S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J Bacteriol. 1979 Jan;137(1):256–263. doi: 10.1128/jb.137.1.256-263.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belay N., Daniels L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol. 1987 Jul;53(7):1604–1610. doi: 10.1128/aem.53.7.1604-1610.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis. Annu Rev Biochem. 1990;59:355–394. doi: 10.1146/annurev.bi.59.070190.002035. [DOI] [PubMed] [Google Scholar]
  4. DiStefano T. D., Gossett J. M., Zinder S. H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol. 1992 Nov;58(11):3622–3629. doi: 10.1128/aem.58.11.3622-3629.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freedman D. L., Gossett J. M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol. 1989 Sep;55(9):2144–2151. doi: 10.1128/aem.55.9.2144-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jablonski P. E., Ferry J. G. Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett. 1992 Sep 1;75(1):55–59. doi: 10.1016/0378-1097(92)90456-x. [DOI] [PubMed] [Google Scholar]
  7. Lie T. J., Pitta T., Leadbetter E. R., Godchaux W., 3rd, Leadbetter J. R. Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol. 1996 Sep;166(3):204–210. doi: 10.1007/s002030050376. [DOI] [PubMed] [Google Scholar]
  8. Loffler F. E., Champine J. E., Ritalahti K. M., Sprague S. J., Tiedje J. M. Complete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteria. Appl Environ Microbiol. 1997 Jul;63(7):2870–2875. doi: 10.1128/aem.63.7.2870-2875.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maymó-Gatell X., Chien Y., Gossett J. M., Zinder S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 1997 Jun 6;276(5318):1568–1571. doi: 10.1126/science.276.5318.1568. [DOI] [PubMed] [Google Scholar]
  10. Smith M. R. Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. J Bacteriol. 1983 Nov;156(2):516–523. doi: 10.1128/jb.156.2.516-523.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991 Jan;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES