Abstract
L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbon or nitrogen was dependent upon (sigma)(sup54), as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase.
Full Text
The Full Text of this article is available as a PDF (337.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
- Bonner C. A., Fischer R. S., Ahmad S., Jensen R. A. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: evolutionary implications and biotechnological impact. Appl Environ Microbiol. 1990 Dec;56(12):3741–3747. doi: 10.1128/aem.56.12.3741-3747.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner C., Jensen R. Prephenate aminotransferase. Methods Enzymol. 1987;142:479–487. doi: 10.1016/s0076-6879(87)42059-4. [DOI] [PubMed] [Google Scholar]
- Craven R., Montie T. C. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J Bacteriol. 1985 Nov;164(2):544–549. doi: 10.1128/jb.164.2.544-549.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer R. S., Berry A., Gaines C. G., Jensen R. A. Comparative action of glyphosate as a trigger of energy drain in eubacteria. J Bacteriol. 1986 Dec;168(3):1147–1154. doi: 10.1128/jb.168.3.1147-1154.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiske M. J., Whitaker R. J., Jensen R. A. Hidden overflow pathway to L-phenylalanine in Pseudomonas aeruginosa. J Bacteriol. 1983 May;154(2):623–631. doi: 10.1128/jb.154.2.623-631.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLOWAY B. W. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955 Dec;13(3):572–581. doi: 10.1099/00221287-13-3-572. [DOI] [PubMed] [Google Scholar]
- Hsing W., Canale-Parola E. Cellobiose chemotaxis by the cellulolytic bacterium Cellulomonas gelida. J Bacteriol. 1992 Dec;174(24):7996–8002. doi: 10.1128/jb.174.24.7996-8002.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R., Fischer R. The postprephenate biochemical pathways to phenylalanine and tyrosine: an overview. Methods Enzymol. 1987;142:472–478. doi: 10.1016/s0076-6879(87)42058-2. [DOI] [PubMed] [Google Scholar]
- Kamoun S., Kado C. I. Phenotypic Switching Affecting Chemotaxis, Xanthan Production, and Virulence in Xanthomonas campestris. Appl Environ Microbiol. 1990 Dec;56(12):3855–3860. doi: 10.1128/aem.56.12.3855-3860.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay W. W., Gronlund A. F. Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa. J Bacteriol. 1969 Oct;100(1):276–282. doi: 10.1128/jb.100.1.276-282.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesibov R., Adler J. Chemotaxis toward amino acids in Escherichia coli. J Bacteriol. 1972 Oct;112(1):315–326. doi: 10.1128/jb.112.1.315-326.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moench T. T., Konetzka W. A. Chemotaxis in Pseudomonas aeruginosa. J Bacteriol. 1978 Jan;133(1):427–429. doi: 10.1128/jb.133.1.427-429.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moulton R. C., Montie T. C. Chemotaxis by Pseudomonas aeruginosa. J Bacteriol. 1979 Jan;137(1):274–280. doi: 10.1128/jb.137.1.274-280.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ordal G. W., Villani D. P., Rosendahl M. S. Chemotaxis towards sugars by Bacillus subtilis. J Gen Microbiol. 1979 Nov;115(1):167–172. doi: 10.1099/00221287-115-1-167. [DOI] [PubMed] [Google Scholar]
- Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem. 1977 Aug 25;252(16):5839–5846. [PubMed] [Google Scholar]
- Song J., Jensen R. A. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol Microbiol. 1996 Nov;22(3):497–507. doi: 10.1046/j.1365-2958.1996.00131.x. [DOI] [PubMed] [Google Scholar]
- Totten P. A., Lara J. C., Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol. 1990 Jan;172(1):389–396. doi: 10.1128/jb.172.1.389-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitaker R. J., Gaines C. G., Jensen R. A. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. J Biol Chem. 1982 Nov 25;257(22):13550–13556. [PubMed] [Google Scholar]
- Xia T. H., Jensen R. A. A single cyclohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to L-tyrosine in Pseudomonas aeruginosa. J Biol Chem. 1990 Nov 15;265(32):20033–20036. [PubMed] [Google Scholar]
- Xia T., Song J., Zhao G., Aldrich H., Jensen R. A. The aroQ-encoded monofunctional chorismate mutase (CM-F) protein is a periplasmic enzyme in Erwinia herbicola. J Bacteriol. 1993 Aug;175(15):4729–4737. doi: 10.1128/jb.175.15.4729-4737.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamir L. O., Tiberio R., Fiske M., Berry A., Jensen R. A. Enzymatic and nonenzymatic dehydration reactions of L-arogenate. Biochemistry. 1985 Mar 26;24(7):1607–1612. doi: 10.1021/bi00328a006. [DOI] [PubMed] [Google Scholar]
- Zhao G. S., Xia T. H., Fischer R. S., Jensen R. A. Cyclohexadienyl dehydratase from Pseudomonas aeruginosa. Molecular cloning of the gene and characterization of the gene product. J Biol Chem. 1992 Feb 5;267(4):2487–2493. [PubMed] [Google Scholar]
- Zhao G., Xia T., Aldrich H., Jensen R. A. Cyclohexadienyl dehydratase from Pseudomonas aeruginosa is a periplasmic protein. J Gen Microbiol. 1993 Apr;139(4):807–813. doi: 10.1099/00221287-139-4-807. [DOI] [PubMed] [Google Scholar]
- Zhao G., Xia T., Song J., Jensen R. A. Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1366–1370. doi: 10.1073/pnas.91.4.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]