Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):679–686. doi: 10.1128/aem.63.2.679-686.1997

Plasmid Transfer between Spatially Separated Donor and Recipient Bacteria in Earthworm-Containing Soil Microcosms

L L Daane, J Molina, M J Sadowsky
PMCID: PMC1389527  PMID: 16535521

Abstract

Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically isolated bacteria in nonsterile soil, using burrowing earthworms as a biological factor to facilitate cell-to-cell contact.

Full Text

The Full Text of this article is available as a PDF (334.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. L., Wood N. D., Porteous L. A. Transconjugation between Bacteria in the Digestive Tract of the Cutworm Peridroma saucia. Appl Environ Microbiol. 1990 May;56(5):1492–1493. doi: 10.1128/aem.56.5.1492-1493.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  3. Cole M. A., Elkan G. H. Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japonicum. Antimicrob Agents Chemother. 1973 Sep;4(3):248–253. doi: 10.1128/aac.4.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daane L. L., Molina J. A., Berry E. C., Sadowsky M. J. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl Environ Microbiol. 1996 Feb;62(2):515–521. doi: 10.1128/aem.62.2.515-521.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiGiovanni G. D., Neilson J. W., Pepper I. L., Sinclair N. A. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol. 1996 Jul;62(7):2521–2526. doi: 10.1128/aem.62.7.2521-2526.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Don R. H., Pemberton J. M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol. 1981 Feb;145(2):681–686. doi: 10.1128/jb.145.2.681-686.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glew J. G., Angle J. S., Sadowsky M. J. In vivo transfer of pR68.45 from Pseudomonas aeruginosa into indigenous soil bacteria. Microb Releases. 1993 Mar;1(4):237–241. [PubMed] [Google Scholar]
  8. Jarrett P., Stephenson M. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol. 1990 Jun;56(6):1608–1614. doi: 10.1128/aem.56.6.1608-1614.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  10. Kinkle B. K., Sadowsky M. J., Schmidt E. L., Koskinen W. C. Plasmids pJP4 and r68.45 Can Be Transferred between Populations of Bradyrhizobia in Nonsterile Soil. Appl Environ Microbiol. 1993 Jun;59(6):1762–1766. doi: 10.1128/aem.59.6.1762-1766.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kinkle B. K., Schmidt E. L. Transfer of the Pea Symbiotic Plasmid pJB5JI in Nonsterile Soil. Appl Environ Microbiol. 1991 Nov;57(11):3264–3269. doi: 10.1128/aem.57.11.3264-3269.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lindow S. E., Knudsen G. R., Seidler R. J., Walter M. V., Lambou V. W., Amy P. S., Schmedding D., Prince V., Hern S. Aerial Dispersal and Epiphytic Survival of Pseudomonas syringae during a Pretest for the Release of Genetically Engineered Strains into the Environment. Appl Environ Microbiol. 1988 Jun;54(6):1557–1563. doi: 10.1128/aem.54.6.1557-1563.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neilson J. W., Josephson K. L., Pepper I. L., Arnold R. B., Di Giovanni G. D., Sinclair N. A. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl Environ Microbiol. 1994 Nov;60(11):4053–4058. doi: 10.1128/aem.60.11.4053-4058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smit E., Venne D., van Elsas J. D. Mobilization of a Recombinant IncQ Plasmid between Bacteria on Agar and in Soil via Cotransfer or Retrotransfer. Appl Environ Microbiol. 1993 Jul;59(7):2257–2263. doi: 10.1128/aem.59.7.2257-2263.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smit E., van Elsas J. D., van Veen J. A., de Vos W. M. Detection of Plasmid Transfer from Pseudomonas fluorescens to Indigenous Bacteria in Soil by Using Bacteriophage phiR2f for Donor Counterselection. Appl Environ Microbiol. 1991 Dec;57(12):3482–3488. doi: 10.1128/aem.57.12.3482-3488.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stotzky G., Devanas M. A., Zeph L. R. Methods for studying bacterial gene transfer in soil by conjugation and transduction. Adv Appl Microbiol. 1990;35:57–169. doi: 10.1016/s0065-2164(08)70243-0. [DOI] [PubMed] [Google Scholar]
  17. Trevors J. T., van Elsas J. D., van Overbeek L. S., Starodub M. E. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol. 1990 Feb;56(2):401–408. doi: 10.1128/aem.56.2.401-408.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson M., Lindow S. E. Release of recombinant microorganisms. Annu Rev Microbiol. 1993;47:913–944. doi: 10.1146/annurev.mi.47.100193.004405. [DOI] [PubMed] [Google Scholar]
  19. Zachmann J. E., Molina J. A. Presence of Culturable Bacteria in Cocoons of the Earthworm Eisenia fetida. Appl Environ Microbiol. 1993 Jun;59(6):1904–1910. doi: 10.1128/aem.59.6.1904-1910.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES