Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Feb;63(2):724–733. doi: 10.1128/aem.63.2.724-733.1997

Computer-Assisted Laser Scanning and Video Microscopy for Analysis of Cryptosporidium parvum Oocysts in Soil, Sediment, and Feces

L J Anguish, W C Ghiorse
PMCID: PMC1389529  PMID: 16535523

Abstract

A computer-assisted laser scanning microscope equipped for confocal laser scanning and color video microscopy was used to examine Cryptosporidium parvum oocysts in two agricultural soils, a barnyard sediment, and calf fecal samples. An agar smear technique was developed for enumerating oocysts in soil and barnyard sediment samples. Enhanced counting efficiency and sensitivity (detection limit, 5.2 x 10(sup2) oocysts(middot)g [dry weight](sup-1)) were achieved by using a semiautomatic counting procedure and confocal laser scanning microscopy to enumerate immunostained oocysts and fragments of oocysts in the barnyard sediment. An agarose-acridine orange mounting procedure was developed for high-resolution confocal optical sectioning of oocysts in soil. Stereo images of serial optical sections revealed the three-dimensional spatial relationships between immunostained oocysts and the acridine orange-stained soil matrix material. In these hydrated, pyrophosphate-dispersed soil preparations, oocysts were not found to be attached to soil particles. A fluorogenic dye permeability assay for oocyst viability (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992) was modified by adding an immunostaining step after application of the fluorogenic dyes propidium iodide and 4(prm1),6-diamidino-2-phenylindole. Comparison of conventional color epifluorescence and differential interference contrast images on one video monitor with comparable black-and-white laser-scanned confocal images on a second monitor allowed for efficient location and interpretation of fluorescently stained oocysts in the soil matrix. This multi-imaging procedure facilitated the interpretation of the viability assay results by overcoming the uncertainties caused by matrix interference and background fluorescence.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloem J., Veninga M., Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995 Mar;61(3):926–936. doi: 10.1128/aem.61.3.926-936.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell A. T., Robertson L. J., Smith H. V. Effects of Preservatives on Viability of Cryptosporidium parvum Oocysts. Appl Environ Microbiol. 1993 Dec;59(12):4361–4362. doi: 10.1128/aem.59.12.4361-4362.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell A. T., Robertson L. J., Smith H. V. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol. 1992 Nov;58(11):3488–3493. doi: 10.1128/aem.58.11.3488-3493.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman P. A., Rush B. A. Efficiency of sand filtration for removing cryptosporidium oocysts from water. J Med Microbiol. 1990 Aug;32(4):243–245. doi: 10.1099/00222615-32-4-243. [DOI] [PubMed] [Google Scholar]
  5. Cronin T. W., Marshall N. J., Caldwell R. L. The intrarhabdomal filters in the retinas of mantis shrimps. Vision Res. 1994 Feb;34(3):279–291. doi: 10.1016/0042-6989(94)90087-6. [DOI] [PubMed] [Google Scholar]
  6. Distel D. L., Cavanaugh C. M. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol. 1994 Apr;176(7):1932–1938. doi: 10.1128/jb.176.7.1932-1938.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drozd C., Schwartzbrod J. Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum. Appl Environ Microbiol. 1996 Apr;62(4):1227–1232. doi: 10.1128/aem.62.4.1227-1232.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fayer R. Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl Environ Microbiol. 1994 Aug;60(8):2732–2735. doi: 10.1128/aem.60.8.2732-2735.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fayer R., Nerad T. Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 1996 Apr;62(4):1431–1433. doi: 10.1128/aem.62.4.1431-1433.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ghiorse W. C., Miller D. N., Sandoli R. L., Siering P. L. Applications of laser scanning microscopy for analysis of aquatic microhabitats. Microsc Res Tech. 1996 Jan 1;33(1):73–86. doi: 10.1002/(SICI)1097-0029(199601)33:1<73::AID-JEMT7>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  11. Hayes E. B., Matte T. D., O'Brien T. R., McKinley T. W., Logsdon G. S., Rose J. B., Ungar B. L., Word D. M., Pinsky P. F., Cummings M. L. Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply. N Engl J Med. 1989 May 25;320(21):1372–1376. doi: 10.1056/NEJM198905253202103. [DOI] [PubMed] [Google Scholar]
  12. Korber D. R., James G. A., Costerton J. W. Evaluation of Fleroxacin Activity against Established Pseudomonas fluorescens Biofilms. Appl Environ Microbiol. 1994 May;60(5):1663–1669. doi: 10.1128/aem.60.5.1663-1669.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laurent M., Johannin G., Gilbert N., Lucas L., Cassio D., Petit P. X., Fleury A. Power and limits of laser scanning confocal microscopy. Biol Cell. 1994;80(2-3):229–240. doi: 10.1111/j.1768-322x.1994.tb00934.x. [DOI] [PubMed] [Google Scholar]
  14. Lawrence J. R., Korber D. R., Hoyle B. D., Costerton J. W., Caldwell D. E. Optical sectioning of microbial biofilms. J Bacteriol. 1991 Oct;173(20):6558–6567. doi: 10.1128/jb.173.20.6558-6567.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
  16. Madore M. S., Rose J. B., Gerba C. P., Arrowood M. J., Sterling C. R. Occurrence of Cryptosporidium oocysts in sewage effluents and selected surface waters. J Parasitol. 1987 Aug;73(4):702–705. [PubMed] [Google Scholar]
  17. Massol-Deyá A. A., Whallon J., Hickey R. F., Tiedje J. M. Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol. 1995 Feb;61(2):769–777. doi: 10.1128/aem.61.2.769-777.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ongerth J. E., Stibbs H. H. Identification of Cryptosporidium oocysts in river water. Appl Environ Microbiol. 1987 Apr;53(4):672–676. doi: 10.1128/aem.53.4.672-676.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robertson L. J., Campbell A. T., Smith H. V. In vitro excystation of Cryptosporidium parvum. Parasitology. 1993 Jan;106(Pt 1):13–19. doi: 10.1017/s003118200007476x. [DOI] [PubMed] [Google Scholar]
  20. Robertson L. J., Campbell A. T., Smith H. V. Induction of folds or sutures on the walls of Cryptosporidium parvum oocysts and their importance as a diagnostic feature. Appl Environ Microbiol. 1993 Aug;59(8):2638–2641. doi: 10.1128/aem.59.8.2638-2641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robertson L. J., Campbell A. T., Smith H. V. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl Environ Microbiol. 1992 Nov;58(11):3494–3500. doi: 10.1128/aem.58.11.3494-3500.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rodgers M. R., Flanigan D. J., Jakubowski W. Identification of algae which interfere with the detection of Giardia cysts and Cryptosporidium oocysts and a method for alleviating this interference. Appl Environ Microbiol. 1995 Oct;61(10):3759–3763. doi: 10.1128/aem.61.10.3759-3763.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rose J. B., Landeen L. K., Riley K. R., Gerba C. P. Evaluation of immunofluorescence techniques for detection of Cryptosporidium oocysts and Giardia cysts from environmental samples. Appl Environ Microbiol. 1989 Dec;55(12):3189–3196. doi: 10.1128/aem.55.12.3189-3196.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vesey G., Slade J. S., Byrne M., Shepherd K., Dennis P. J., Fricker C. R. Routine monitoring of Cryptosporidium oocysts in water using flow cytometry. J Appl Bacteriol. 1993 Jul;75(1):87–90. doi: 10.1111/j.1365-2672.1993.tb03413.x. [DOI] [PubMed] [Google Scholar]
  25. Wolfaardt G. M., Lawrence J. R., Robarts R. D., Caldwell S. J., Caldwell D. E. Multicellular organization in a degradative biofilm community. Appl Environ Microbiol. 1994 Feb;60(2):434–446. doi: 10.1128/aem.60.2.434-446.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES