Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Apr;63(4):1199–1207. doi: 10.1128/aem.63.4.1199-1207.1997

Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa)

U Bosse, P Frenzel
PMCID: PMC1389540  PMID: 16535562

Abstract

The activity and distribution of CH(inf4)-oxidizing bacteria (MOB) in flooded rice (Oryza sativa) soil microcosms was investigated. CH(inf4) oxidation was shown to occur in undisturbed microcosms by using (sup14)CH(inf4), and model calculations indicated that almost 90% of the oxidation measured had taken place at a depth where only roots could provide the O(inf2) necessary. Slurry from soil planted with rice had an apparent K(infm) for CH(inf4) of 4 (mu)M and a V(infmax) of 0.1 (mu)mol g (dry weight)(sup-1) h(sup-1). At a depth of 1 to 2 cm, there was no significant difference (P > 0.05) in numbers of MOB between soil from planted and nonplanted microcosms (mean, 7.7 x 10(sup5) g [fresh weight](sup-1)). Thus, the densely rooted soil at 1 to 2 cm deep did not represent rhizospheric soil with respect to the number of MOB. A significantly increased number of MOB was found only in soil immediately around the roots (1.2 x 10(sup6) g [fresh weight](sup-1)), corresponding to a layer of 0.1 to 0.2 mm. Plant-associated CH(inf4) oxidation was shown in a double chamber with carefully washed intact rice plants. Up to 90% of the CH(inf4) supplied to the root compartment was oxidized in the plants. CH(inf4) oxidation on isolated roots was higher and had a larger variability than that in soil slurries. Roots had an apparent K(infm) for CH(inf4) of 6 (mu)M and a V(infmax) of 5 (mu)mol g (dry weight)(sup-1) h(sup-1). The average number of MOB in homogenized roots was larger than on the rhizoplane and increased with plant age. MOB also were found in surface-sterilized roots and basal culms, indicating the ability of these bacteria to colonize the interior of roots and culms.

Full Text

The Full Text of this article is available as a PDF (263.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belay N., Daniels L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol. 1987 Jul;53(7):1604–1610. doi: 10.1128/aem.53.7.1604-1610.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  3. Hurek T., Reinhold-Hurek B., Van Montagu M., Kellenberger E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol. 1994 Apr;176(7):1913–1923. doi: 10.1128/jb.176.7.1913-1923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. King G. M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol. 1994 Sep;60(9):3220–3227. doi: 10.1128/aem.60.9.3220-3227.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. King G. M., Roslev P., Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida everglades. Appl Environ Microbiol. 1990 Sep;56(9):2902–2911. doi: 10.1128/aem.56.9.2902-2911.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lidstrom M. E., Somers L. Seasonal study of methane oxidation in lake washington. Appl Environ Microbiol. 1984 Jun;47(6):1255–1260. doi: 10.1128/aem.47.6.1255-1260.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Phillips D. A., Kapulnik Y. Plant isoflavonoids, pathogens and symbionts. Trends Microbiol. 1995 Feb;3(2):58–64. doi: 10.1016/s0966-842x(00)88876-9. [DOI] [PubMed] [Google Scholar]
  8. Reinhold B., Hurek T., Niemann E. G., Fendrik I. Close association of azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol. 1986 Sep;52(3):520–526. doi: 10.1128/aem.52.3.520-526.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rowe R., Todd R., Waide J. Microtechnique for most-probable-number analysis. Appl Environ Microbiol. 1977 Mar;33(3):675–680. doi: 10.1128/aem.33.3.675-680.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  11. Widdel F. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol. 1986 May;51(5):1056–1062. doi: 10.1128/aem.51.5.1056-1062.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Widdel F., Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol. 1981 Jul;129(5):395–400. doi: 10.1007/BF00406470. [DOI] [PubMed] [Google Scholar]
  13. Zehnder A. J., Brock T. D. Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol. 1980 Jan;39(1):194–204. doi: 10.1128/aem.39.1.194-204.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES