Abstract
Most copper bioleaching plants operate with a high concentration of sulfate salts caused by the continuous addition of sulfuric acid and the recycling of the leaching solution. Since the bacteria involved in bioleaching have been generally isolated at low sulfate concentrations, the bacterial population in ores leached with the high-sulfate solution (1.25 M) employed in a copper production plant was investigated. The complexity of the original population was assessed by the length pattern of the spacer regions between the 16S and 23S rRNA genes, observed after PCR amplification of the DNA extracted from the leached ore. Six main spacers were distinguished by electrophoretic migration, but they could be further resolved into eight spacers by nucleotide sequence homology. The degree of homology was inferred from the electrophoretic migration of the heteroduplexes formed after hybridization. One of the spacers was indistinguishable from that found in Thiobacillus thiooxidans, four could be related to Thiobacillus ferrooxidans, and three could be related to Leptospirillum ferrooxidans. Only five of the spacers in the original sample could be recovered after culturing in media containing different inorganic energy source. Altogether, the results indicate that the bacteria in the leached ore formed a community composed of at least three species: a fairly homogeneous population of T. thiooxidans strains and two heterogeneous populations of T. ferrooxidans and L. ferrooxidans strains.
Full Text
The Full Text of this article is available as a PDF (927.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apel W. A., Dugan P. R., Filppi J. A., Rheins M. S. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent antibody staining. Appl Environ Microbiol. 1976 Jul;32(1):159–165. doi: 10.1128/aem.32.1.159-165.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque S. N., Valero J. R., Lavoie M. C., Levesque R. C. Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl Environ Microbiol. 1995 Apr;61(4):1623–1626. doi: 10.1128/aem.61.4.1623-1626.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
- Delwart E. L., Shpaer E. G., Louwagie J., McCutchan F. E., Grez M., Rübsamen-Waigmann H., Mullins J. I. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science. 1993 Nov 19;262(5137):1257–1261. doi: 10.1126/science.8235655. [DOI] [PubMed] [Google Scholar]
- Espejo R. T., Escanilla D. Detection of HIV1 DNA by a simple procedure of polymerase chain reaction, using "primer-dimer" formation as an internal control of amplification. Res Virol. 1993 May-Jun;144(3):243–246. doi: 10.1016/s0923-2516(06)80035-x. [DOI] [PubMed] [Google Scholar]
- Goebel B. M., Stackebrandt E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol. 1994 May;60(5):1614–1621. doi: 10.1128/aem.60.5.1614-1621.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison A. P., Jr The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol. 1984;38:265–292. doi: 10.1146/annurev.mi.38.100184.001405. [DOI] [PubMed] [Google Scholar]
- Hutchins S. R., Davidson M. S., Brierley J. A., Brierley C. L. Microorganisms in reclamation of metals. Annu Rev Microbiol. 1986;40:311–336. doi: 10.1146/annurev.mi.40.100186.001523. [DOI] [PubMed] [Google Scholar]
- Jensen M. A., Hubner R. J. Use of homoduplex ribosomal DNA spacer amplification products and heteroduplex cross-hybridization products in the identification of Salmonella serovars. Appl Environ Microbiol. 1996 Aug;62(8):2741–2746. doi: 10.1128/aem.62.8.2741-2746.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen M. A., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 1993 Dec;3(3):186–194. doi: 10.1101/gr.3.3.186. [DOI] [PubMed] [Google Scholar]
- Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane D. J., Harrison A. P., Jr, Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol. 1992 Jan;174(1):269–278. doi: 10.1128/jb.174.1.269-278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muyzer G., de Bruyn A. C., Schmedding D. J., Bos P., Westbroek P., Kuenen G. J. A Combined Immunofluorescence-DNA-Fluorescence Staining Technique for Enumeration of Thiobacillus ferrooxidans in a Population of Acidophilic Bacteria. Appl Environ Microbiol. 1987 Apr;53(4):660–664. doi: 10.1128/aem.53.4.660-664.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pizarro J., Jedlicki E., Orellana O., Romero J., Espejo R. T. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol. 1996 Apr;62(4):1323–1328. doi: 10.1128/aem.62.4.1323-1328.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salazar O., Takamiya M., Orellana O. Characterization of the two rRNA gene operons present in Thiobacillus ferrooxidans. FEBS Lett. 1989 Jan 2;242(2):439–443. doi: 10.1016/0014-5793(89)80518-6. [DOI] [PubMed] [Google Scholar]
- Vasquez M., Espejo R. T. Chemolithotrophic bacteria in copper ores leached at high sulfuric Acid concentration. Appl Environ Microbiol. 1997 Jan;63(1):332–334. doi: 10.1128/aem.63.1.332-334.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vreeland R. H. Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol. 1987;14(4):311–356. doi: 10.3109/10408418709104443. [DOI] [PubMed] [Google Scholar]
- Wichlacz P. L., Unz R. F. Acidophilic, heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol. 1981 May;41(5):1254–1261. doi: 10.1128/aem.41.5.1254-1261.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]