Abstract
Insecticidal activity and receptor binding properties of Bacillus thuringiensis toxins to yellow and striped rice stem borers (Sciropophaga incertulas and Chilo suppresalis, respectively) were investigated. Yellow stem borer (YSB) was susceptible to Cry1Aa, Cry1Ac, Cry2A, and Cry1C toxins with similar toxicities. To striped stem borer (SSB), Cry1Ac, Cry2A, and Cry1C were more toxic than Cry1Aa toxin. Binding assays were performed with (sup125)I-labeled toxins (Cry1Aa, Cry1Ac, Cry2A, and Cry1C) and brush border membrane vesicles (BBMV) prepared from YSB and SSB midguts. Both Cry1Aa and Cry1Ac toxins showed saturable, high-affinity binding to YSB BBMV. Cry2A and Cry1C toxins bound to YSB BBMV with relatively low binding affinity but with high binding site concentration. To SSB, both Cry1Aa and Cry1Ac exhibited high binding affinity, although these toxins are less toxic than Cry1C and Cry2A. Cry1C and Cry2A toxins bound to SSB BBMV with relatively low binding affinity but with high binding site concentration. Heterologous competition binding assays were performed to investigate the binding site cross-reactivity. The results showed that Cry1Aa and Cry1Ac recognize the same binding site, which is different from the Cry2A or Cry1C binding site in YSB and SSB. These data suggest that development of multitoxin systems in transgenic rice with toxin combinations which recognize different binding sites may be useful in implementing deployment strategies that decrease the rate of pest adaptation to B. thuringiensis toxin-expressing rice varieties.
Full Text
The Full Text of this article is available as a PDF (208.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton K. A., Whiteley H. R., Yang N. S. Bacillus thuringiensis section sign-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects. Plant Physiol. 1987 Dec;85(4):1103–1109. doi: 10.1104/pp.85.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estada U., Ferre J. Binding of Insecticidal Crystal Proteins of Bacillus thuringiensis to the Midgut Brush Border of the Cabbage Looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and Selection for Resistance to One of the Crystal Proteins. Appl Environ Microbiol. 1994 Oct;60(10):3840–3846. doi: 10.1128/aem.60.10.3840-3846.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiuza L., Nielsen-Leroux C., Goze E., Frutos R., Charles J. Binding of Bacillus thuringiensis Cry1 Toxins to the Midgut Brush Border Membrane Vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): Evidence of Shared Binding Sites. Appl Environ Microbiol. 1996 May;62(5):1544–1549. doi: 10.1128/aem.62.5.1544-1549.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., Shimamoto K. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Biotechnology (N Y) 1993 Oct;11(10):1151–1155. doi: 10.1038/nbt1093-1151. [DOI] [PubMed] [Google Scholar]
- Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann C., Lüthy P., Hütter R., Pliska V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem. 1988 Apr 5;173(1):85–91. doi: 10.1111/j.1432-1033.1988.tb13970.x. [DOI] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee M. K., Dean D. H. Inconsistencies in determining Bacillus thuringiensis toxin binding sites relationship by comparing competition assays with ligand blotting. Biochem Biophys Res Commun. 1996 Mar 27;220(3):575–580. doi: 10.1006/bbrc.1996.0445. [DOI] [PubMed] [Google Scholar]
- Lee M. K., Milne R. E., Ge A. Z., Dean D. H. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J Biol Chem. 1992 Feb 15;267(5):3115–3121. [PubMed] [Google Scholar]
- Lee M. K., Rajamohan F., Gould F., Dean D. H. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol. 1995 Nov;61(11):3836–3842. doi: 10.1128/aem.61.11.3836-3842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang Y., Patel S. S., Dean D. H. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem. 1995 Oct 20;270(42):24719–24724. doi: 10.1074/jbc.270.42.24719. [DOI] [PubMed] [Google Scholar]
- MacIntosh S. C., Stone T. B., Jokerst R. S., Fuchs R. L. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8930–8933. doi: 10.1073/pnas.88.20.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
- McGaughey W. H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 1985 Jul 12;229(4709):193–195. doi: 10.1126/science.229.4709.193. [DOI] [PubMed] [Google Scholar]
- McGaughey W. H., Whalon M. E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science. 1992 Nov 27;258(5087):1451–1455. doi: 10.1126/science.258.5087.1451. [DOI] [PubMed] [Google Scholar]
- Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Nielsen-Leroux C., Charles J. F., Thiéry I., Georghiou G. P. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem. 1995 Feb 15;228(1):206–210. doi: 10.1111/j.1432-1033.1995.tb20251.x. [DOI] [PubMed] [Google Scholar]
- Perlak F. J., Stone T. B., Muskopf Y. M., Petersen L. J., Parker G. B., McPherson S. A., Wyman J., Love S., Reed G., Biever D. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol. 1993 May;22(2):313–321. doi: 10.1007/BF00014938. [DOI] [PubMed] [Google Scholar]
- Rahardja U., Whalon M. E. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1995 Feb;88(1):21–26. doi: 10.1093/jee/88.1.21. [DOI] [PubMed] [Google Scholar]
- Rajamohan F., Alcantara E., Lee M. K., Chen X. J., Curtiss A., Dean D. H. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J Bacteriol. 1995 May;177(9):2276–2282. doi: 10.1128/jb.177.9.2276-2282.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. L., Garneau L., Masson L., Brousseau R. Early response of cultured lepidopteran cells to exposure to delta-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim Biophys Acta. 1991 Jun 18;1065(2):250–260. doi: 10.1016/0005-2736(91)90237-3. [DOI] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Groeters F. R., Moar W. J., Johnson M. W., Luo K., Adang M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Heckel D. G. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1994 Dec;60(12):4627–4629. doi: 10.1128/aem.60.12.4627-4629.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang J. D., Shelton A. M., Van Rie J., De Roeck S., Moar W. J., Roush R. T., Peferoen M. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1996 Feb;62(2):564–569. doi: 10.1128/aem.62.2.564-569.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989 Dec 8;186(1-2):239–247. doi: 10.1111/j.1432-1033.1989.tb15201.x. [DOI] [PubMed] [Google Scholar]
- Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]
- Whiteley H. R., Schnepf H. E. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol. 1986;40:549–576. doi: 10.1146/annurev.mi.40.100186.003001. [DOI] [PubMed] [Google Scholar]
- Wolfersberger M. G. The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia. 1990 May 15;46(5):475–477. doi: 10.1007/BF01954236. [DOI] [PubMed] [Google Scholar]
- Wu S. J., Dean D. H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. J Mol Biol. 1996 Feb 2;255(4):628–640. doi: 10.1006/jmbi.1996.0052. [DOI] [PubMed] [Google Scholar]
- Wünn J., Klöti A., Burkhardt P. K., Biswas G. C., Launis K., Iglesias V. A., Potrykus I. Transgenic Indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Biotechnology (N Y) 1996 Feb;14(2):171–176. doi: 10.1038/nbt0296-171. [DOI] [PubMed] [Google Scholar]
- van der Salm T., Bosch D., Honée G., Feng L., Munsterman E., Bakker P., Stiekema W. J., Visser B. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol Biol. 1994 Oct;26(1):51–59. doi: 10.1007/BF00039519. [DOI] [PubMed] [Google Scholar]