Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Apr;63(4):1570–1576. doi: 10.1128/aem.63.4.1570-1576.1997

Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

C E Morris, J Monier, M Jacques
PMCID: PMC1389557  PMID: 16535579

Abstract

Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique.

Full Text

The Full Text of this article is available as a PDF (477.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. A., Kamineni D. C., Sawicki J. A., Beveridge T. J. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. Appl Environ Microbiol. 1994 Sep;60(9):3182–3191. doi: 10.1128/aem.60.9.3182-3191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  3. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745. doi: 10.1146/annurev.mi.49.100195.003431. [DOI] [PubMed] [Google Scholar]
  4. Huang C. T., Yu F. P., McFeters G. A., Stewart P. S. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol. 1995 Jun;61(6):2252–2256. doi: 10.1128/aem.61.6.2252-2256.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacques M., Kinkel L. L., Morris C. E. Population Sizes, Immigration, and Growth of Epiphytic Bacteria on Leaves of Different Ages and Positions of Field-Grown Endive (Cichorium endivia var. latifolia). Appl Environ Microbiol. 1995 Mar;61(3):899–906. doi: 10.1128/aem.61.3.899-906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  7. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Robinson R. W., Akin D. E., Nordstedt R. A., Thomas M. V., Aldrich H. C. Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl Environ Microbiol. 1984 Jul;48(1):127–136. doi: 10.1128/aem.48.1.127-136.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wilson M., Lindow S. E. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994 Dec;60(12):4468–4477. doi: 10.1128/aem.60.12.4468-4477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yu F. P., McFeters G. A. Physiological responses of bacteria in biofilms to disinfection. Appl Environ Microbiol. 1994 Jul;60(7):2462–2466. doi: 10.1128/aem.60.7.2462-2466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yu F. P., McFeters G. A. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. J Microbiol Methods. 1994;20:1–10. doi: 10.1016/0167-7012(94)90058-2. [DOI] [PubMed] [Google Scholar]
  13. Zottola E. A., Sasahara K. C. Microbial biofilms in the food processing industry--should they be a concern? Int J Food Microbiol. 1994 Oct;23(2):125–148. doi: 10.1016/0168-1605(94)90047-7. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES