Abstract
Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1.
Full Text
The Full Text of this article is available as a PDF (157.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- CLAUS D., WALKER N. THE DECOMPOSITION OF TOLUENE BY SOIL BACTERIA. J Gen Microbiol. 1964 Jul;36:107–122. doi: 10.1099/00221287-36-1-107. [DOI] [PubMed] [Google Scholar]
- Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990 May;56(5):1279–1285. doi: 10.1128/aem.56.5.1279-1285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heald S., Jenkins R. O. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol. 1994 Dec;60(12):4634–4637. doi: 10.1128/aem.60.12.4634-4637.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulbert M. H. Cometabolism: a critique. J Theor Biol. 1977 Nov 21;69(2):287–291. doi: 10.1016/0022-5193(77)90137-0. [DOI] [PubMed] [Google Scholar]
- Hyman M. R., Page C. L., Arp D. J. Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol. 1994 Aug;60(8):3033–3035. doi: 10.1128/aem.60.8.3033-3035.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krumme M. L., Timmis K. N., Dwyer D. F. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms. Appl Environ Microbiol. 1993 Aug;59(8):2746–2749. doi: 10.1128/aem.59.8.2746-2749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClay K., Streger S. H., Steffan R. J. Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl Environ Microbiol. 1995 Sep;61(9):3479–3481. doi: 10.1128/aem.61.9.3479-3481.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. J., Montgomery S. O., Mahaffey W. R., Pritchard P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol. 1987 May;53(5):949–954. doi: 10.1128/aem.53.5.949-954.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. J., Montgomery S. O., O'neill E. J., Pritchard P. H. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol. 1986 Aug;52(2):383–384. doi: 10.1128/aem.52.2.383-384.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman L. M., Wackett L. P. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry. 1995 Oct 31;34(43):14066–14076. doi: 10.1021/bi00043a012. [DOI] [PubMed] [Google Scholar]
- Newman L. M., Wackett L. P. Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J Bacteriol. 1997 Jan;179(1):90–96. doi: 10.1128/jb.179.1.90-96.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parales R. E., Adamus J. E., White N., May H. D. Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl Environ Microbiol. 1994 Dec;60(12):4527–4530. doi: 10.1128/aem.60.12.4527-4530.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salanitro J. P., Diaz L. A., Williams M. P., Wisniewski H. L. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Appl Environ Microbiol. 1994 Jul;60(7):2593–2596. doi: 10.1128/aem.60.7.2593-2596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields M. S., Montgomery S. O., Chapman P. J., Cuskey S. M., Pritchard P. H. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium g4. Appl Environ Microbiol. 1989 Jun;55(6):1624–1629. doi: 10.1128/aem.55.6.1624-1629.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields M. S., Reagin M. J. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol. 1992 Dec;58(12):3977–3983. doi: 10.1128/aem.58.12.3977-3983.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Wackett L. P. Co-metabolism: is the emperor wearing any clothes? Curr Opin Biotechnol. 1996 Jun;7(3):321–325. doi: 10.1016/s0958-1669(96)80038-3. [DOI] [PubMed] [Google Scholar]
- White G. F., Russell N. J., Tidswell E. C. Bacterial scission of ether bonds. Microbiol Rev. 1996 Mar;60(1):216–232. doi: 10.1128/mr.60.1.216-232.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Ploeg J., Smidt M. P., Landa A. S., Janssen D. B. Identification of chloroacetaldehyde dehydrogenase involved in 1,2-dichloroethane degradation. Appl Environ Microbiol. 1994 May;60(5):1599–1605. doi: 10.1128/aem.60.5.1599-1605.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]