Abstract
1. The fractional distribution of blood flow was measured by the isotope dilution method and absolute blood flow estimated in twenty-four muscles of chronically prepared, unanaesthetized cats.
2. In the quiet, alert cat the estimated mean muscle blood flow ranged from 5·9 to 39·3 ml./min 100 g muscle. Flow was three times greater in grouped red than white limb muscles.
3. The myoglobin concentration ranged from 0·88 to 3·91 mg/g muscle. The myoglobin concentration of grouped red exceeded that of white muscle and varied in each muscle directly and linearly with blood flow with a high correlation (P < 0·001).
4. Capillary density was estimated by determination of alkaline phosphatase activity. Alkaline phosphatase activity was significantly greater in red than white muscles and varied directly with fractional blood flow in these same muscles with a high correlation (P < 0·001).
5. Contraction time was generally two to three times longer in red than white muscle. There was a direct and highly correlated relationship (P < 0·001) between blood flow and contraction time.
6. The direct linear relationship between muscle blood flow and myoglobin concentration, capillary density, and contraction time characteristic of quiet wakefulness was lost during rapid eye movement sleep or excitement produced by electrical stimulation of the hypothalamus as a consequence of selective changes in flow in red and white skeletal muscle.
7. The type of metabolism of any skeletal muscle is adapted to its activity during quiet, alert behaviour, rather than during sleep or excitement.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAXTER I. G., CUNNINGHAM D. J. C., PEARCE J. W. Comparison of cardiac output determinations in the cat by direct Fick and flowmeter methods. J Physiol. 1952 Nov;118(3):299–309. doi: 10.1113/jphysiol.1952.sp004795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEATTY C. H., PETERSON R. D., BOCEK R. M. Metabolism of red and white muscle fiber groups. Am J Physiol. 1963 May;204:939–942. doi: 10.1152/ajplegacy.1963.204.5.939. [DOI] [PubMed] [Google Scholar]
- BJORK A., KUGELBERG E. The electrical activity of the muscles of the eye and eyelids in various positions and during movement. Electroencephalogr Clin Neurophysiol. 1953 Nov;5(4):595–602. doi: 10.1016/0013-4694(53)90037-6. [DOI] [PubMed] [Google Scholar]
- BREININ G. M., MOLDAVER J. Electromyography of the human extraocular muscles. I. Normal kinesiology; divergence mechanism. AMA Arch Ophthalmol. 1955 Aug;54(2):200–210. doi: 10.1001/archopht.1955.00930020204006. [DOI] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960 Feb;150:399–416. doi: 10.1113/jphysiol.1960.sp006394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULLER A. J., LEWIS D. M. THE RATE OF TENSION DEVELOPMENT IN ISOMETRIC TETANIC CONTRACTIONS OF MAMMALIAN FAST AND SLOW SKELETAL MUSCLE. J Physiol. 1965 Feb;176:337–354. doi: 10.1113/jphysiol.1965.sp007554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridgman C. F., Eldred E. Intramuscular pressure changes during contraction in relation to muscle spindles. Am J Physiol. 1965 Nov;209(5):891–899. doi: 10.1152/ajplegacy.1965.209.5.891. [DOI] [PubMed] [Google Scholar]
- Cooper S. The isometric responses of mammalian muscles. J Physiol. 1930 Jun 27;69(4):377–385. doi: 10.1113/jphysiol.1930.sp002657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWSON D. M., ROMANUL F. C. ENZYMES IN MUSCLES. II. HISTOCHEMICAL AND QUANTITATIVE STUDIES. Arch Neurol. 1964 Oct;11:369–378. doi: 10.1001/archneur.1964.00460220031004. [DOI] [PubMed] [Google Scholar]
- DOMONKOS J., LATZKOVITS L. The metabolism of the tonic and tetanic muscles. II. Oxidative metabolism. Arch Biochem Biophys. 1961 Oct;95:144–146. doi: 10.1016/0003-9861(61)90119-9. [DOI] [PubMed] [Google Scholar]
- DUBOWITZ V., PEARSE A. G. A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Z Zellforch Microsk Anat Histochem. 1960;2:105–117. doi: 10.1007/BF00744575. [DOI] [PubMed] [Google Scholar]
- Friedman J. J. Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator. Am J Physiol. 1968 Mar;214(3):488–493. doi: 10.1152/ajplegacy.1968.214.3.488. [DOI] [PubMed] [Google Scholar]
- GEORGE J. C., TALESARA C. L. A quantitative study of the distribution pattern of certain oxidizing enzymes and a lipase in the red and white fibers of the pigeon breast muscle. J Cell Comp Physiol. 1961 Dec;58:253–260. doi: 10.1002/jcp.1030580306. [DOI] [PubMed] [Google Scholar]
- GIOVACCHINI R. P., SMITH R. D. The vascularity of some red and white muscles of the rabbit. Acta Anat (Basel) 1956;28(4):342–358. doi: 10.1159/000141151. [DOI] [PubMed] [Google Scholar]
- Hartree W., Hill A. V. The nature of the isometric twitch. J Physiol. 1921 Nov 18;55(5-6):389–411. doi: 10.1113/jphysiol.1921.sp001984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton S. M., Vrbová G. Absence of functional hyperaemia in the soleus muscle of the cat. J Physiol. 1968 Feb;194(2):86–7P. [PubMed] [Google Scholar]
- Kabat E. A., Furth J. A histochemical study of the distribution of alkaline phosphatase in various normal and neoplastic tissues. Am J Pathol. 1941 May;17(3):303–318.5. [PMC free article] [PubMed] [Google Scholar]
- LAWRIE R. A. The relation of energy-rich phosphate in muscle to myoglobin and to cytochrome-oxidase activity. Biochem J. 1953 Sep;55(2):305–309. doi: 10.1042/bj0550305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levari R., Kornblueth W. Metabolic characteristics of extraocular muscles of rabbits. Comparison with heart and latissimus dorsi muscles. Isr J Med Sci. 1967 Jul-Aug;3(4):513–523. [PubMed] [Google Scholar]
- Lucas K. On the influence of tension upon the contraction of skeletal muscle at high temperatures. J Physiol. 1904 Feb 25;30(5-6):443–448. doi: 10.1113/jphysiol.1904.sp001006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HETEROGENEOUS PALE MUSCLE (M. GASTROCNEMIUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:85–99. doi: 10.1152/jn.1965.28.1.85. [DOI] [PubMed] [Google Scholar]
- MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HOMOGENEOUS RED MUSCLE (SOLEUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:71–84. doi: 10.1152/jn.1965.28.1.71. [DOI] [PubMed] [Google Scholar]
- MORTON R. K. The purification of aklaline phosphatases of animal tissues. Biochem J. 1954 Aug;57(4):595–603. doi: 10.1042/bj0570595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPherson A., Tokunaga J. The effects of cross-innervation on the myoglobin concentration of tonic and phasic muscles. J Physiol. 1967 Jan;188(1):121–129. doi: 10.1113/jphysiol.1967.sp008128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OGATA T., MORI M. HISTOCHEMICAL STUDY OF OXIDATIVE ENZYMES IN VERTEBRATE MUSCLES. J Histochem Cytochem. 1964 Mar;12:171–182. doi: 10.1177/12.3.171. [DOI] [PubMed] [Google Scholar]
- ROMANUL F. C. CAPILLARY SUPPLY AND METABOLISM OF MUSCLE FIBERS. Arch Neurol. 1965 May;12:497–509. doi: 10.1001/archneur.1965.00460290053007. [DOI] [PubMed] [Google Scholar]
- ROMANUL F. C. ENZYMES IN MUSCLE. I. HISTOCHEMICAL STUDIES OF ENZYMES IN INDIVIDUAL MUSCLE FIBERS. Arch Neurol. 1964 Oct;11:355–358. doi: 10.1001/archneur.1964.00460220017003. [DOI] [PubMed] [Google Scholar]
- Reis D. J., Moorhead D., Wooten G. F. Differential regulation of blood flow to red and white muscle in sleep and defense behavior. Am J Physiol. 1969 Aug;217(2):541–546. doi: 10.1152/ajplegacy.1969.217.2.541. [DOI] [PubMed] [Google Scholar]
- Reis D. J., Wooten G. F., Hollenberg M. Differences in nutrient blood flow of red and white skeletal muscle in the cat. Am J Physiol. 1967 Sep;213(3):592–596. doi: 10.1152/ajplegacy.1967.213.3.592. [DOI] [PubMed] [Google Scholar]
- SAPIRSTEIN L. A. Regional blood flow by fractional distribution of indicators. Am J Physiol. 1958 Apr;193(1):161–168. doi: 10.1152/ajplegacy.1958.193.1.161. [DOI] [PubMed] [Google Scholar]
- STEIN J. M., PADYKULA H. A. Histochemical classification of individual skeletal muscle fibers of the rat. Am J Anat. 1962 Mar;110:103–123. doi: 10.1002/aja.1001100203. [DOI] [PubMed] [Google Scholar]
- Sapirstein L. A. The indicator fractionation technique for the study of regional blood flow. Gastroenterology. 1967 Feb;52(2):365–371. [PubMed] [Google Scholar]
- Sussman H. H., Small P. A., Jr, Cotlove E. Human alkaline phosphatase. Immunochemical identification of organ-specific isoenzymes. J Biol Chem. 1968 Jan 10;243(1):160–166. [PubMed] [Google Scholar]