Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1966 Sep;186(1):187–200. doi: 10.1113/jphysiol.1966.sp008028

Active transport of sodium and potassium in mammalian skeletal muscle and its modification by nerve and by cholinergic and adrenergic agents

Margaret Dockry, R P Kernan, Aileen Tangney
PMCID: PMC1395898  PMID: 5914252

Abstract

1. Active transport of Na+ and K+ by Na-rich extensor digitorum and soleus muscles of rat was found to be increased considerably when muscles were innervated during enrichment with Na+ in K-free modified Krebs solution containing 160 mM-Na at 2° C and recovery in a similar fluid with 10 mM-K and 137 mM-Na at 37° C, bubbled with oxygen.

2. Addition of acetylcholine (2·0 μg/ml.) to recovery fluid containing denervated extensors increased active transport, whereas addition of eserine (50 μg/ml.), decamethonium (0·1 μg/ml.) and to a lesser extent tubocurarine (0·26 μg/ml.) inhibited active transport. Blocking of nerve conduction in innervated extensor inhibited K+ uptake more than Na+ excretion.

3. The membrane potential of Na-rich extensor muscles measured soon after re-immersion in recovery fluid was higher in denervated than in innervated muscles. In the latter it was close to the K-equilibrium potential (EK). It is suggested that denervation here makes the Na-pump electrogenic by decreasing K+ uptake either by decreased permeability or by inactivating a K-pump. Evidence is presented that the latter is more likely.

4. Addition of isoprenaline to Na-rich soleus muscles in recovery fluid increased active transport and reduced the membrane potential measured soon after re-immersion in recovery fluid. The Na-pump still remained electrogenic in the presence of isoprenaline. It was suggested that isoprenaline might also stimulate the Na-pump, perhaps through activation of lactic dehydrogenase.

Full text

PDF
187

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLWOOD M. J., COBBOLD A. F. Lactic acid release by intraarterial adrenaline infusions before and after dibenyline, and its relationship to blood-flow changes in the human forearm. J Physiol. 1961 Jul;157:328–334. doi: 10.1113/jphysiol.1961.sp006725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ARMETT C. J., RITCHIE J. M. The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J Physiol. 1960 Jun;152:141–158. doi: 10.1113/jphysiol.1960.sp006476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BOWMAN W. C., ZAIMIS E. The effects of adrenaline, noradrenaline and isoprenaline on skeletal muscle contractions in the cat. J Physiol. 1958 Nov 10;144(1):92–107. doi: 10.1113/jphysiol.1958.sp006088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CAREY M. J., CONWAY E. J., KERNAN R. P. Secretion of sodium ions by the frog's sartorius. J Physiol. 1959 Oct;148:51–82. doi: 10.1113/jphysiol.1959.sp006273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CONWAY E. J., KERNAN R. P., ZADUNAISKY J. A. The sodium pump in skeletal muscle in relation to energy barriers. J Physiol. 1961 Feb;155:263–279. doi: 10.1113/jphysiol.1961.sp006626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COOKE R. E., SEGAR W. E., CHEEK D. B., COVILLE F. E., DARROW D. C. The extrarenal correction of alkalosis associated with potassium deficiency. J Clin Invest. 1952 Aug;31(8):798–805. doi: 10.1172/JCI102665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CREESE R., SCHOLES N. W., WHALEN W. J. Resting potentials of diaphragm muscle after prolonged anoxia. J Physiol. 1958 Feb 17;140(2):301–317. doi: 10.1113/jphysiol.1958.sp005935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cross S. B., Keynes R. D., Rybová R. The coupling of sodium efflux and potassium influx in frog muscle. J Physiol. 1965 Dec;181(4):865–880. doi: 10.1113/jphysiol.1965.sp007802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DEE E., KERNAN R. P. Energetics of sodium transport in Rana pipiens. J Physiol. 1963 Mar;165:550–558. doi: 10.1113/jphysiol.1963.sp007078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DETTBARN W. D. New evidence for the role of acetylcholine in conduction. Biochim Biophys Acta. 1960 Jul 15;41:377–386. doi: 10.1016/0006-3002(60)90034-2. [DOI] [PubMed] [Google Scholar]
  14. DRAHOTA Z., GUTMANN E. LONG-TERM REGULATORY INFLUENCE OF THE NERVOUS SYSTEM ON SOME METABOLIC DIFFERENCES IN MUSCLES OF DIFFERENT FUNCTION. Physiol Bohemoslov. 1963;12:339–348. [PubMed] [Google Scholar]
  15. Dydynska M., Harris E. J. Consumption of high-energy phosphates during active sodium and potassium interchange in frog muscle. J Physiol. 1966 Jan;182(1):92–109. doi: 10.1113/jphysiol.1966.sp007811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Elmqvist D., Feldman D. S. Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J Physiol. 1965 Dec;181(3):498–505. doi: 10.1113/jphysiol.1965.sp007778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GREENGARD P., STRAUB R. W. Metabolic studies on the hyperpolarization following activity in mammalian non-myelinated nerve fibres. J Physiol. 1962 May;161:414–423. doi: 10.1113/jphysiol.1962.sp006896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GREEN H. D., KEPCHAR J. H. Control of peripheral resistance in major systemic vascular beds. Physiol Rev. 1959 Jul;39(3):617–686. doi: 10.1152/physrev.1959.39.3.617. [DOI] [PubMed] [Google Scholar]
  19. KERNAN R. P. Membrane potential changes during sodium transport in frog sartorius muscle. Nature. 1962 Mar 10;193:986–987. doi: 10.1038/193986a0. [DOI] [PubMed] [Google Scholar]
  20. KERNAN R. P. The role of lactate in the active excretion of sodium by frog muscle. J Physiol. 1962 Jun;162:129–137. doi: 10.1113/jphysiol.1962.sp006919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KIRSCHNER L. B. Effect of cholinesterase inhibitors and atropine on active sodium transport across frog skin. Nature. 1953 Aug 15;172(4372):348–349. doi: 10.1038/172348a0. [DOI] [PubMed] [Google Scholar]
  22. Kernan R. P. Denervation and the electrogenesis of the sodium pump in frog skeletal muscle. Nature. 1966 Apr 30;210(5035):537–538. doi: 10.1038/210537a0. [DOI] [PubMed] [Google Scholar]
  23. MULLINS L. J., AWAD M. Z. THE CONTROL OF THE MEMBRANE POTENTIAL OF MUSCLE FIBERS BY THE SODIUM PUMP. J Gen Physiol. 1965 May;48:761–775. doi: 10.1085/jgp.48.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MULLINS L. J., NODA K. THE INFLUENCE OF SODIUM-FREE SOLUTIONS ON THE MEMBRANE POTENTIAL OF FROG MUSCLE FIBERS. J Gen Physiol. 1963 Sep;47:117–132. doi: 10.1085/jgp.47.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. ORLOFF J., KENNEDY T. J., Jr, BERLINER R. W. The effect of potassium in nephrectomized rats with hypokalemic alkalosis. J Clin Invest. 1953 Jun;32(6):538–542. doi: 10.1172/JCI102769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SRETER F. A., WOO G. CELL WATER, SODIUM, AND POTASSIUM IN RED AND WHITE MAMMALIAN MUSCLES. Am J Physiol. 1963 Dec;205:1290–1294. doi: 10.1152/ajplegacy.1963.205.6.1290. [DOI] [PubMed] [Google Scholar]
  28. ZAIMIS E. J. The action of decamethonium on normal and denervated mammalian muscle. J Physiol. 1951 Jan;112(1-2):176–190. doi: 10.1113/jphysiol.1951.sp004518. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES