Abstract
1. The latencies of spike responses evoked alternatively by brief mechanical (M) and electrical (E) pulses applied to single mechanoreceptive terminals in frog skin were compared on the same receptor.
2. Latency was found to be a maximum at threshold and to decrease with increased stimulus strength for both modes of excitation, but at all strengths M latency exceeded E latency. Mean maximum and minimum values for M latency were 4·8 and 2·85 msec; for E latency the maximum was 2·8 and minimum 2·3 msec.
3. At high frequency and strength of E stimulation there was an abrupt and marked shortening of latency to a fixed minimum value which ranged from 0·5 to 1·2 msec (mean 0·8). This was taken to be the response of the parent myelinated axon excited directly. The gap (1·5 msec) between the minimum value for the receptor response (2·3 msec) and the axonal response (0·8 msec) was taken to represent conduction time in the terminal branches of the sensory axon.
4. The response latency for excitation of the sensory terminal was also dependent on the duration of the stimulus pulse, but whereas the latency range for the M stimulus could be greatly extended that for the E stimulus was only slightly affected by increase in pulse duration.
5. The responses evoked by direct currents were complex, and consisted of an early brief discharge at the start of a cathodal current followed after a delay of 5-30 sec by a prolonged multi-fibre discharge which out-lasted the stimulus. It is proposed that the sensory terminal is rapidly accommodating to current flow and that the delayed discharge is due to release of chemical material.
6. It is suggested that delay in mechanical excitation may be due to non-rigid coupling of the receptor terminal to the skin tissues.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALANIS J. Effects of direct current on motor neurones. J Physiol. 1953 Jun 29;120(4):569–578. doi: 10.1113/jphysiol.1953.sp004918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ARMETT C. J., HUNSPERGER R. W. Excitation of receptors in the pad of the cat by single and double mechanical pulses. J Physiol. 1961 Sep;158:15–38. doi: 10.1113/jphysiol.1961.sp006751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CATTON W. T. Some properties of frog skin mechanoreceptors. J Physiol. 1958 Apr 30;141(2):305–322. doi: 10.1113/jphysiol.1958.sp005975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EYZAGUIRRE C., KUFFLER S. W. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol. 1955 Sep 20;39(1):87–119. doi: 10.1085/jgp.39.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBBARD S. J. A study of rapid mechanical events in a mechanoreceptor. J Physiol. 1958 Apr 30;141(2):198–218. doi: 10.1113/jphysiol.1958.sp005968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R. Excitation and changes in adaptation by stretch of mechanoreceptors. J Physiol. 1956 Sep 27;133(3):588–602. doi: 10.1113/jphysiol.1956.sp005611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R. Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J Physiol. 1956 Apr 27;132(1):40–60. doi: 10.1113/jphysiol.1956.sp005501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARUHASHI J., MIZUGUCHI K., TASAKI I. Action currents in single afferent nerve fibres elicited by stimulation of the skin of the toad and the cat. J Physiol. 1952 Jun;117(2):129–151. doi: 10.1113/jphysiol.1952.sp004736. [DOI] [PMC free article] [PubMed] [Google Scholar]