Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1967 Jan;188(1):107–120.1. doi: 10.1113/jphysiol.1967.sp008127

Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: an analysis employing techniques of tissue culture

W W Douglas, T Kanno, S R Sampson
PMCID: PMC1395985  PMID: 4291730

Abstract

1. A method has been devised for isolating adrenal chromaffin cells (from gerbils) and maintaining them in vitro. Transmembrane potentials of these cells were recorded with intracellular micro-electrodes.

2. Acetylcholine depolarized the chromaffin cells and so did various other substances known to evoke catecholamine secretion: nicotine, pilocarpine, histamine, 5-hydroxytryptamine, angiotensin, and bradykinin.

3. The depolarizing effect of acetylcholine was partially antagonized by hexamethonium and was blocked completely by hexamethonium in combination with atropine.

4. Hexamethonium alone completely blocked the response to nicotine; and atropine alone abolished the response to pilocarpine. Thus both nicotinic and muscarinic receptors are present in gerbil chromaffin cells.

5. The experiments demonstrate that the various secretagogues and antagonists tested act on the plasma membrane of the chromaffin cell and raise the question whether depolarization may be an important event in stimulus-secretion coupling.

Full text

PDF
107

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burn J. H., Dale H. H. The vaso-dilator action of histamine, and its physiological significance. J Physiol. 1926 Apr 23;61(2):185–214. doi: 10.1113/jphysiol.1926.sp002283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CALDWELL P. C., DOWNING A. C. The preparation of capillary microelectrodes. J Physiol. 1955 May 27;128(2):31P–31P. [PubMed] [Google Scholar]
  3. CIECIURA S. J., MARCUS P. I., PUCK T. T. Clonal growth in vitro of epithelial cells from normal human tissues. J Exp Med. 1956 Oct 1;104(4):615–628. doi: 10.1084/jem.104.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COUPLAND R. E. (ELECTRON MICROSCOPIC OBSERVATIONS ON THE STRUCTURE OF THE RAT ADRENAL MEDULLA. I. THE ULTRASTRUCTURE AND ORGANIZATION OF CHROMAFFIN CELLS IN THE NORMAL ADRENAL MEDULLA.) J Anat. 1965 Apr;99:231–254. [PMC free article] [PubMed] [Google Scholar]
  5. DE ROBERTIS E. D., SABATINI D. D. Submicroscopic analysis of the secretory process in the adrenal medulla. Fed Proc. 1960 Dec;19(Suppl 5):70–78. [PubMed] [Google Scholar]
  6. DE ROBERTIS E., VAZ FERREIRA A. Electron microscope study of the excretion of cathecol-containing droplets in the adrenal medulla. Exp Cell Res. 1957 Jun;12(3):568–574. doi: 10.1016/0014-4827(57)90172-6. [DOI] [PubMed] [Google Scholar]
  7. DOUGLAS W. W., POISNER A. M. On the mode of action of acetylcholine in evoking adrenal medullary secretion: increased uptake of calcium during the secretory response. J Physiol. 1962 Aug;162:385–392. doi: 10.1113/jphysiol.1962.sp006940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douglas W. W., Poisner A. M. Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules. J Physiol. 1966 Mar;183(1):236–248. doi: 10.1113/jphysiol.1966.sp007863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Douglas W. W., Poisner A. M. On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP (unhydrolysed) during release of catecholamines. J Physiol. 1966 Mar;183(1):249–256. doi: 10.1113/jphysiol.1966.sp007864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Douglas W. W., Poisner A. M. Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature. 1965 Dec 11;208(5015):1102–1103. doi: 10.1038/2081102a0. [DOI] [PubMed] [Google Scholar]
  12. Douglas W. W., Poisner A. M., Rubin R. P. Efflux of adenine nucleotides from perfused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J Physiol. 1965 Jul;179(1):130–137. doi: 10.1113/jphysiol.1965.sp007652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. EAGLE H., PIEZ K. The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med. 1962 Jul 1;116:29–43. doi: 10.1084/jem.116.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. EARLE W. R., BRYANT J. C., SCHILLING E. L. Certain factors limiting the size of the tissue culture and the development of massive cultures. Ann N Y Acad Sci. 1954 Nov 17;58(7):1000–1011. doi: 10.1111/j.1749-6632.1954.tb45887.x. [DOI] [PubMed] [Google Scholar]
  16. FELDBERG W., LEWIS G. P. THE ACTION OF PEPTIDES ON THE ADRENAL MEDULLA. RELEASE OF ADRENALINE BY BRADYKININ AND ANGIOTENSIN. J Physiol. 1964 May;171:98–108. doi: 10.1113/jphysiol.1964.sp007364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feldberg W., Minz B., Tsudzimura H. The mechanism of the nervous discharge of adrenaline. J Physiol. 1934 Jun 9;81(3):286–304. doi: 10.1113/jphysiol.1934.sp003136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Puck T. T., Marcus P. I. A RAPID METHOD FOR VIABLE CELL TITRATION AND CLONE PRODUCTION WITH HELA CELLS IN TISSUE CULTURE: THE USE OF X-IRRADIATED CELLS TO SUPPLY CONDITIONING FACTORS. Proc Natl Acad Sci U S A. 1955 Jul 15;41(7):432–437. doi: 10.1073/pnas.41.7.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REID G., RAND M. Pharmacological actions of synthetic 5-hydroxytryptamine (serotonin, thrombocytin). Nature. 1952 May 10;169(4306):801–802. doi: 10.1038/169801a0. [DOI] [PubMed] [Google Scholar]
  21. SEAMAN A. R., STAHL S. The uptake of I131 by the thyroid gland of the adult mouse after in vitro cultivation. Exp Cell Res. 1956 Aug;11(1):220–221. doi: 10.1016/0014-4827(56)90209-9. [DOI] [PubMed] [Google Scholar]
  22. SEAMAN A. R. The in vitro cultivation of the prostate gland of the adult mouse in alkaline fluid medium. Exp Cell Res. 1956 Aug;11(2):283–288. doi: 10.1016/0014-4827(56)90103-3. [DOI] [PubMed] [Google Scholar]
  23. Staszewska-Barczak J., Vane J. R. The release of catechol amines from the adrenal medulla by histamine. Br J Pharmacol Chemother. 1965 Dec;25(3):728–742. doi: 10.1111/j.1476-5381.1965.tb01795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TROWELL O. A. The culture of mature organs in a synthetic medium. Exp Cell Res. 1959 Jan;16(1):118–147. doi: 10.1016/0014-4827(59)90201-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES