Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1977 Jul;186(1):60–73. doi: 10.1097/00000658-197707000-00009

Intravenous Amino Acids as the Sole Nutritional Substrate: Utilization and Metabolism in Fasting Normal Human Subjects

David E F Tweedle, Garry F Fitzpatrick, Murray F Brennan, Jesus M Culebras, Bruce M Wolfe, Margaret R Ball, Francis D Moore
PMCID: PMC1396199  PMID: 406864

Abstract

The fasting normal human volunteer subject provides an ideal experimental setting for the initial investigation of foodstuffs whose use is proposed for the acutely ill surgical patient. In the normal human subject many variables can be controlled; the achievement of an ideal body fuel economy is quite simple; if a favorable utilization of injected foodstuffs cannot be achieved in this setting, it is unlikely, and remains to be proven, that utilization will be satisfactory under the challenges of acute surgical trauma. In this experimental model, employing four normal human volunteer subjects, nutrition has been provided by the intravenous infusion of isotonic amino acids (FreAmineR II) at a 3.4% concentration. No other source of calories or nutrients was provided. In this setting, utilization was very poor; the subjects were in negative nitrogen balance throughout. The nitrogen excretion was significantly greater than the total of infused nitrogen. The changes in protein, fat and carbohydrate intermediates, as well as the alteration in hormone concentrations, suggest the following endocrine governance of fuel economy in this setting: a sharp rise in glucagon with maintenance of insulin concentration; rapid gluconeogenesis at the expense of both injected and endogenous amino acids; a progressive ketosis without any associated improvement in protein economy; fat oxidation to meet caloric need. The changes in plasma amino acid concentrations are of outstanding interest. They demonstrate changes appropriate to the infusion gradient with the exception of three amino acids whose concentrations did not respond to high infusate levels (serine, lysine, and alanine); likewise, by the fact that methionine rose remarkably though present in only low concentrations in the infusion. These data, taken with other information reported in the literature, as well as continuing studies in these laboratories, strongly suggest that the utilization of infused amino acids for protein synthesis is favored by the provision of an additional caloric source such as glucose.

Full text

PDF
60

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adibi S. A. Influence of dietary deprivations on plasma concentration of free amino acids of man. J Appl Physiol. 1968 Jul;25(1):52–57. doi: 10.1152/jappl.1968.25.1.52. [DOI] [PubMed] [Google Scholar]
  2. Aoki T. T., Brennan M. F., Müller W. A., Cahill G. F., Jr Amino acid levels across normal forearm muscle: whole blood vs. plasma. Adv Enzyme Regul. 1974;12:157–165. doi: 10.1016/0065-2571(74)90012-0. [DOI] [PubMed] [Google Scholar]
  3. Bergström J., Fürst P., Norée L. O., Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974 Jun;36(6):693–697. doi: 10.1152/jappl.1974.36.6.693. [DOI] [PubMed] [Google Scholar]
  4. Blackburn G. L., Flatt J. P., Clowes G. H., O'Donnell T. E. Peripheral intravenous feeding with isotonic amino acid solutions. Am J Surg. 1973 Apr;125(4):447–454. doi: 10.1016/0002-9610(73)90080-9. [DOI] [PubMed] [Google Scholar]
  5. Brennan M. F., Fitzpatrick G. F., Cohen K. H., Moore F. D. Glycerol: major contributor to the short term protein sparing effect of fat emulsions in normal man. Ann Surg. 1975 Oct;182(4):386–394. doi: 10.1097/00000658-197510000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cahill G. F., Jr, Herrera M. G., Morgan A. P., Soeldner J. S., Steinke J., Levy P. L., Reichard G. A., Jr, Kipnis D. M. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966 Nov;45(11):1751–1769. doi: 10.1172/JCI105481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cahill G. F., Jr Starvation in man. N Engl J Med. 1970 Mar 19;282(12):668–675. doi: 10.1056/NEJM197003192821209. [DOI] [PubMed] [Google Scholar]
  8. Culebras J. M., Brennan M. F., Fitzpatrick G. F., Moore F. D. Nitrogen--sparing in normal man:effect of glycerol and amino acids given peripherally. Surg Forum. 1976;27(62):37–39. [PubMed] [Google Scholar]
  9. DOLE V. P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 1956 Feb;35(2):150–154. doi: 10.1172/JCI103259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Felig P., Marliss E., Ohman J. L., Cahill C. F., Jr Plasma amino acid levels in diabetic ketoacidosis. Diabetes. 1970 Oct;19(10):727–728. doi: 10.2337/diab.19.10.727. [DOI] [PubMed] [Google Scholar]
  11. Fitzpatrick G. F., Meguid M. M., O'Connell R. C., O'Connor N. E., Ball M. R., Brennan M. F. Nitrogen sparing by carbohydrate in man: Intermittent or continuous enteral compared with continuous parenteral glucose. Surgery. 1975 Jul;78(1):105–113. [PubMed] [Google Scholar]
  12. Flatt J. P., Blackburn G. L. The matabolic fuel regulatory system: implications for protein-sparing therapies during caloric deprivation and disease. Am J Clin Nutr. 1974 Feb;27(2):175–187. doi: 10.1093/ajcn/27.2.175. [DOI] [PubMed] [Google Scholar]
  13. Freeman J. B., Stegink L. D., Fry L. K., Sherman B. M., Denbesten L. Evaluation of amino acid infusions as protein-sparing agents in normal adult subjects. Am J Clin Nutr. 1975 May;28(5):477–481. doi: 10.1093/ajcn/28.5.477. [DOI] [PubMed] [Google Scholar]
  14. Juan C., AvRuskin T. W. A combined immunoassay of human growth hormone and insulin: cumulative assessment of assay performance. J Clin Endocrinol Metab. 1971 Jul;33(1):150–152. doi: 10.1210/jcem-33-1-150. [DOI] [PubMed] [Google Scholar]
  15. LaBrosse E. H., Beech J. A., McLaughlin J. S., Mansberger A. R., Keene W. D., 3rd, Cowley R. A. Plasma amino acids in normal humans and patients with shock. Surg Gynecol Obstet. 1967 Sep;125(3):516–520. [PubMed] [Google Scholar]
  16. O'Connell R. C., Morgan A. P., Aoki T. T., Ball M. R., Moore F. D. Nitrogen conservation in starvation: graded responses to intravenous glucose. J Clin Endocrinol Metab. 1974 Sep;39(3):555–563. doi: 10.1210/jcem-39-3-555. [DOI] [PubMed] [Google Scholar]
  17. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rossini A. A., Aoki T. T., Ganda O. P., Soeldner J. S., Cahill G. F., Jr Alanine-induced amino acid interrelationships. Metabolism. 1975 Oct;24(10):1185–1192. doi: 10.1016/0026-0495(75)90155-9. [DOI] [PubMed] [Google Scholar]
  19. Wolfe B. M., Culebras J. M., Tweedle D., Moore F. D. Effect of glucose on the nitrogen--sparing effect of amino acids given intravenously. Surg Forum. 1976;27(62):39–41. [PubMed] [Google Scholar]
  20. Young G. A., Parsons F. M. Plasma amino acid imbalance in patients with chronic renal failure on intermittent dialysis. Clin Chim Acta. 1970 Mar;27(3):491–496. doi: 10.1016/0009-8981(70)90303-7. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES