Abstract
Total resting leg blood flow, measured by venous occlusion plethysmography; leg oxygen consumption; substrate turnover; and leg surface temperature were determined in 21 nonseptic burn patients and four normals. The patients studied during the second to third week postinjury sustained total body surface injuries averaging 45% (range 12-86%) and leg injuries of 35% total leg surface (0-82.5%). To integrate the peripheral metabolic and circulatory events with the systemic responses to injury, total body oxygen consumption, cardiac output, rectal and mean skin temperatures were also measured. Leg blood flow and leg surface temperature generally increased with total burn size but did not correlate with cardiac output, total body oxygen consumption, or body temperature. However, leg blood flow was closely related to the extent of the leg burn (r2 = 0.73). To evaluate the metabolic determinants of the wound blood flow, patients were matched for burn size (40.5% total body surface in one group vs. 42%), resulting in similar systemic responses to injury (cardiac index 7.8 ± 0.7 L/min m2 vs. 7.5 ± 0.8, VO2 204 ± 12 ml/min m2 vs. 241 ± 22, rectal temperature 38.5 ± 0.3° vs. 38.3 ± 0.3°, NS). One group (n = 7) had extensive leg burns (58% of the leg surface), the other (n = 9) minimal leg injuries (9.5%). Leg oxygen consumption was similar in the two groups (0.24 ± 0.01 ml/100 ml leg min vs. 0.19 ± 0.04, NS), although leg blood flow was markedly increased in the injured extremities (8.0 ± 0.5 ml/100 ml leg min vs. 4.2 ± 0.4, p < 0.001). Glucose uptake and lactate production were enhanced in the burned extremities (glucose 0.34 ± 0.08 mg/100 ml leg mmn vs. 0.04 ± 0.03, p < 0.01, lactate 0.30 ± 0.08 mg/100 ml leg min vs. 0.06 ± 0.06, p < 0.05) and related in a general manner with size of the leg burn. Increased peripheral blood flow following injury is directed to the wound and unrelated to aerobic metabolic demands of the extremity. The selectively perfused wound consumes glucose and produces lactate. The increased systemic cardiovascular and metabolic responses to thermal injury are essential for the enhanced circulatory and anaerobic demands of the healing wound.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline M. J. Metabolism of the circulating leukocyte. Physiol Rev. 1965 Oct;45(4):674–720. doi: 10.1152/physrev.1965.45.4.674. [DOI] [PubMed] [Google Scholar]
- Comstock J. P., Udenfriend S. Effect of lactate on collagen proline hydroxylase activity in cultured L-929 fibroblasts. Proc Natl Acad Sci U S A. 1970 Jun;66(2):552–557. doi: 10.1073/pnas.66.2.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbertson D. P. The disturbance of metabolism produced by bony and non-bony injury, with notes on certain abnormal conditions of bone. Biochem J. 1930;24(4):1244–1263. doi: 10.1042/bj0241244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbertson D., Tilstone W. J. Metabolism during the postinjury period. Adv Clin Chem. 1969;12:1–55. doi: 10.1016/s0065-2423(08)60257-7. [DOI] [PubMed] [Google Scholar]
- Duke J. H., Jr, Jørgensen S. B., Broell J. R., Long C. L., Kinney J. M. Contribution of protein to caloric expenditure following injury. Surgery. 1970 Jul;68(1):168–174. [PubMed] [Google Scholar]
- Grant M. E., Prockop D. J. The biosynthesis of collagen. 3. N Engl J Med. 1972 Feb 10;286(6):291–300. doi: 10.1056/NEJM197202102860604. [DOI] [PubMed] [Google Scholar]
- Gump F. E., Kinney J. M., Price J. B., Jr Energy metabolism in surgical patients: oxygen consumption and blood flow. J Surg Res. 1970 Dec;10(12):613–627. doi: 10.1016/0022-4804(70)90090-9. [DOI] [PubMed] [Google Scholar]
- Gump F. E., Price J. B., Jr, Kinney J. M. Blood flow and oxygen consumption in patients with severe burns. Surg Gynecol Obstet. 1970 Jan;130(1):23–28. [PubMed] [Google Scholar]
- Hall J. W., Tucker D. M. Automated determination of glucose using glucose oxidase and potassium ferrocyanide. Anal Biochem. 1968 Oct 10;26(1):12–17. doi: 10.1016/0003-2697(68)90027-4. [DOI] [PubMed] [Google Scholar]
- Im M. J., Hoopes J. E. Energy metabolism in healing skin wounds. J Surg Res. 1970 Oct;10(10):459–464. doi: 10.1016/0022-4804(70)90070-3. [DOI] [PubMed] [Google Scholar]
- KONTOS H. A., SHAPIRO W., MAUCK H. P., Jr, RICHARDSON D. W., PATTERSON J. L., Jr, SHARPE A. R., Jr MECHANISM OF CERTAIN ABNORMALITIES OF THE CIRCULATION TO THE LIMBS IN THYROTOXICOSIS. J Clin Invest. 1965 Jun;44:947–956. doi: 10.1172/JCI105212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long C. L., Spencer J. L., Kinney J. M., Geiger J. W. Carbohydrate metabolism in man: effect of elective operations and major injury. J Appl Physiol. 1971 Jul;31(1):110–116. doi: 10.1152/jappl.1971.31.1.110. [DOI] [PubMed] [Google Scholar]
- Niinikoski J., Hunt T. K., Dunphy J. E. Oxygen supply in healing tissue. Am J Surg. 1972 Mar;123(3):247–252. doi: 10.1016/0002-9610(72)90277-2. [DOI] [PubMed] [Google Scholar]
- Riegel C., Koop C. E., Drew J., Stevens L. W., Rhoads J. E., Bullitt L., Barrus D., Grigger R. P., Barnes M., Barnhart A. THE NUTRITIONAL REQUIREMENTS FOR NITROGEN BALANCE IN SURGICAL PATIENTS DURING THE EARLY POSTOPERATIVE PERIOD. J Clin Invest. 1947 Jan;26(1):18–23. doi: 10.1172/JCI101786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowell L. B. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974 Jan;54(1):75–159. doi: 10.1152/physrev.1974.54.1.75. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W. Carbohydrate metabolism in trauma. Clin Endocrinol Metab. 1976 Nov;5(3):731–745. doi: 10.1016/s0300-595x(76)80048-5. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Curreri P. W., Spitzer K. W., Spitzer M. E., Pruitt B. A., Jr Supranormal dietary intake in thermally injured hypermetabolic patients. Surg Gynecol Obstet. 1971 May;132(5):881–886. [PubMed] [Google Scholar]
- Wilmore D. W. Hormonal responses and their effect on metabolism. Surg Clin North Am. 1976 Oct;56(5):999–1018. doi: 10.1016/s0039-6109(16)41029-7. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Long J. M., Mason A. D., Jr, Skreen R. W., Pruitt B. A., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974 Oct;180(4):653–669. doi: 10.1097/00000658-197410000-00031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilmore D. W., Mason A. D., Jr, Johnson D. W., Pruitt B. A., Jr Effect of ambient temperature on heat production and heat loss in burn patients. J Appl Physiol. 1975 Apr;38(4):593–597. doi: 10.1152/jappl.1975.38.4.593. [DOI] [PubMed] [Google Scholar]
- Wilmore D. W., Mason A. D., Pruitt B. A., Jr Alterations in glucose kinetics following thermal injury. Surg Forum. 1975;26:81–83. [PubMed] [Google Scholar]
- Wilmore D. W., Orcutt T. W., Mason A. D., Jr, Pruitt B. A. Alterations in hypothalamic function following thermal injury. J Trauma. 1975 Aug;15(8):697–703. doi: 10.1097/00005373-197508000-00012. [DOI] [PubMed] [Google Scholar]
- Wyss C. R., Brengelmann G. L., Johnson J. M., Rowell L. B., Niederberger M. Control of skin blood flow, sweating, and heart rate: role of skin vs. core temperature. J Appl Physiol. 1974 Jun;36(6):726–733. doi: 10.1152/jappl.1974.36.6.726. [DOI] [PubMed] [Google Scholar]
- ZIMMER J. G., DEMIS D. J. Burns and other skin lesions: microcirculatory responses in man during healing. Science. 1963 May 31;140(3570):994–996. doi: 10.1126/science.140.3570.994. [DOI] [PubMed] [Google Scholar]