Abstract
1 The influence of enzyme induction with antipyrine and pentobarbitone was studied on the rates of formation of the major metabolites of antipyrine: 4-hydroxyantipyrine, norantipyrine and 3-hydroxymethyl-antipyrine + 3-carboxy-antipyrine. The inducing drugs were given to panels of healthy volunteers for 8 days and prior to and after this period antipyrine total elimination clearance was determined in plasma, whereas the partial clearances for production of the individual metabolites were assessed on the basis of urinary excretion data. 2 Antipyrine total clearance had significantly increased by 16% following treatment with antipyrine, which could almost entirely be attributed to a selective increase in the rate of production of norantipyrine. 3 With pentobarbitone total clearance of antipyrine had increased by 60%, which was associated with a significant increase in the clearance of production of all three metabolites. However, the increase in norantipyrine formation was significantly higher than the increase in 4-hydroxyantipyrine and 3-hydroxymethyl-antipyrine formation. 4 The most likely explanation for these differences in the degree of induction of the different metabolic routes of antipyrine, is that different enzymes are involved in the different routes. Apparently the enzyme involved in norantipyrine formation is most sensitive to induction by antipyrine and pentobarbitone. By measuring rates of antipyrine metabolite formation it may be possible to study the degree of selectivity of enzyme inducers on oxidative drug metabolism.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alván G., Piafsky K., Lind M., von Bahr C. Effect of pentobarbital on the disposition of alprenolol. Clin Pharmacol Ther. 1977 Sep;22(3):316–321. doi: 10.1002/cpt1977223316. [DOI] [PubMed] [Google Scholar]
- BRODIE B. B., AXELROD J. The fate of antipyrine in man. J Pharmacol Exp Ther. 1950 Jan;98(1):97–104. [PubMed] [Google Scholar]
- Baty J. D., Evans D. A. Norphenazone, a new metabolite of phenazone in human urine. J Pharm Pharmacol. 1973 Jan;25(1):83–84. doi: 10.1111/j.2042-7158.1973.tb09124.x. [DOI] [PubMed] [Google Scholar]
- Breckenridge A., Orme M. L., Thorgeirsson S., Davies D. S., Brooks R. V. Drug interactions with warfarin: studies with dichloralphenazone, chloral hydrate and phenazone (antipyrine). Clin Sci. 1971 Apr;40(4):351–364. doi: 10.1042/cs0400351. [DOI] [PubMed] [Google Scholar]
- Breimer D. D., Zilly W., Richter E. Influence of rifampicin on drug metabolism: differences between hexobarbital and antipyrine. Clin Pharmacol Ther. 1977 Apr;21(4):470–481. doi: 10.1002/cpt1977214470. [DOI] [PubMed] [Google Scholar]
- Collste P., Seideman P., Borg K. O., Haglund K., von Bahr C. Influence of pentobarbital on effect and plasma levels of alprenolol and 4-hydroxy-alprenolol. Clin Pharmacol Ther. 1979 Apr;25(4):423–427. doi: 10.1002/cpt1979254423. [DOI] [PubMed] [Google Scholar]
- Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
- Danhof M., Breimer D. D. Studies on the different metabolic pathways of antipyrine in man. I. Oral administration of 250, 500 and 1000 mg to healthy volunteers. Br J Clin Pharmacol. 1979 Dec;8(6):529–537. doi: 10.1111/j.1365-2125.1979.tb01040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danhof M., Krom D. P., Breimer D. D. Studies on the different metabolic pathways of antipyrine in rats: influence of phenobarbital and 3-methylcholanthrene treatment. Xenobiotica. 1979 Nov;9(11):695–702. doi: 10.3109/00498257909042337. [DOI] [PubMed] [Google Scholar]
- Danhof M., de Boer A. G., de Groot-van der Vis E., Breimer D. D. Assay of 3-carboxy-antipyrine in urine by capillary gas chromatography with nitrogen selective detection. Some preliminary results in man. Pharmacology. 1979;19(4):215–220. doi: 10.1159/000137313. [DOI] [PubMed] [Google Scholar]
- Haglund K., Seideman P., Collste P., Borg K. O., von Bahr C. Influence of pentobarbital on metoprolol plasma levels. Clin Pharmacol Ther. 1979 Sep;26(3):326–329. doi: 10.1002/cpt1979263326. [DOI] [PubMed] [Google Scholar]
- Huffman D. H., Shoeman D. W., Pentikäinen P., Azarnoff D. L. The effect of spironolactone on antipyrine metabolism in man. Pharmacology. 1973;10(6):338–344. doi: 10.1159/000136455. [DOI] [PubMed] [Google Scholar]
- Jusko W. J. Influence of cigarette smoking on drug metabolism in man. Drug Metab Rev. 1979;9(2):221–236. doi: 10.3109/03602537908993892. [DOI] [PubMed] [Google Scholar]
- Jusko W. J. Role of tobacco smoking in pharmacokinetics. J Pharmacokinet Biopharm. 1978 Feb;6(1):7–39. doi: 10.1007/BF01066061. [DOI] [PubMed] [Google Scholar]
- Kellermann G., Luyten-Kellermann M. Phenobarbital-induced drug metabolism in man. Toxicol Appl Pharmacol. 1977 Jan;39(1):97–104. doi: 10.1016/0041-008x(77)90181-8. [DOI] [PubMed] [Google Scholar]
- Lewis P. J., Friedman L. A. Prophylaxis of neonatal jaundice with maternal antipyrine treatment. Lancet. 1979 Feb 10;1(8111):300–302. doi: 10.1016/s0140-6736(79)90709-8. [DOI] [PubMed] [Google Scholar]
- Ohnhaus E. E., Kirchhof B., Peheim E. Effect of enzyme induction on plasma lipids using antipyrine, phenobarbital, and rifampicin. Clin Pharmacol Ther. 1979 May;25(5 Pt 1):591–597. doi: 10.1002/cpt1979255part1591. [DOI] [PubMed] [Google Scholar]
- Ohnhaus E. E., Park B. K. Measurement of urinary 6-beta-hydroxycortisol excretion as an in vivo parameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur J Clin Pharmacol. 1979 Mar 26;15(2):139–145. doi: 10.1007/BF00609878. [DOI] [PubMed] [Google Scholar]
- Orme M. L., Davies L., Breckenridge A. Increased glucuronidation of bilirubin in man and rat by administration of antipyrine (phenazone). Clin Sci Mol Med. 1974 Apr;46(4):511–518. doi: 10.1042/cs0460511. [DOI] [PubMed] [Google Scholar]
- Piafsky K. M., Sitar D. S., Ogilvie R. I. Effect of phenobarbital on the disposition of intravenous theophylline. Clin Pharmacol Ther. 1977 Sep;22(3):336–339. doi: 10.1002/cpt1977223336. [DOI] [PubMed] [Google Scholar]
- Roberts C. J., Jackson L., Halliwell M., Branch R. A. The relationship between liver volume, antipyrine clearance and indocyanine green clearance before and after phenobarbitone administration in man. Br J Clin Pharmacol. 1976 Oct;3(5):907–913. doi: 10.1111/j.1365-2125.1976.tb00646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vesell E. S., Page J. G. Genetic control of the phenobarbital-induced shortening of plasma antipyrine half-lives in man. J Clin Invest. 1969 Dec;48(12):2202–2209. doi: 10.1172/JCI106186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vesell E. S., Passananti G. T. Anomalous results of studies on drug interaction in man. II. Halofenate (mk-185) and antipyrine, bishydroxycoumarin, and warfarin. Pharmacology. 1975;13(2):112–127. doi: 10.1159/000136892. [DOI] [PubMed] [Google Scholar]
- Yoshimura H., Shimeno H., Tsukamoto H. Metabolism of drugs. LIX. A new metabolite of antipyrine. Biochem Pharmacol. 1968 Aug;17(8):1511–1516. doi: 10.1016/0006-2952(68)90210-4. [DOI] [PubMed] [Google Scholar]
- Yoshimura H., Shimeno H., Tsukamoto H. Metabolism of drugs. LXX. Further study on antipyrine metabolism. Chem Pharm Bull (Tokyo) 1971 Jan;19(1):41–45. doi: 10.1248/cpb.19.41. [DOI] [PubMed] [Google Scholar]
- Zietz E., Eichelbaum M., Dengler H. J., Spiteller G. Zum Metabolismus von Antipyrin (Phenazon) beim Menschen. Arzneimittelforschung. 1978;28(2):315–319. [PubMed] [Google Scholar]
- Zilly W., Breimer D. D., Richter E. Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol. 1975 Dec 19;9(2-3):219–227. doi: 10.1007/BF00614021. [DOI] [PubMed] [Google Scholar]
