Skip to main content
Gut logoLink to Gut
. 1977 Aug;18(8):640–643. doi: 10.1136/gut.18.8.640

Electrical assessment of functional lactase activity in conscious man.

N W Read, R J Davies, C D Holdsworth, R J Levin
PMCID: PMC1411713  PMID: 892609

Abstract

Using an electrical technique for measuring transjejunal potential differences (PDs) in conscious man, we have estimated the electrogenic absorption of the hexoses liberated by hydrolysis of lactose which was infused into the jejunum of one normal control and 21 patients with diarrhoea. The results were compared with jejunal lactase levels determined from biopsy specimens taken from the recording site immediately after infusion. The PD evoked by 100 mM lactose was very significantly lower in patients with lactase levels below 4 units (lactase deficient) compared with subjects with normal lactase levels. There was also a significant correlation (r = 0.87, P less than 0.005) between the magnitude of the lactose potential (expressed as the ratio of the maximum glucose transfer potential) and the mucosal lactase level in the hypolactasic subjects but not in patients with normal lactase levels. Thus, in the subjects with lactase deficiency, the electrogenic transfer of hexose is clearly limited by the rate of lactose hydrolysis. Unlike other assessments of functional lactase activity, the electrical test provides a specific index of jejunal function and, moreover, can be adapted to investigate the possible disorders of small intestinal motility and secretion associated with hypolactasia.

Full text

PDF
640

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGESS E. A., LEVIN B., MAHALANABIS D., TONGE R. E. HEREDITARY SUCROSE INTOLERANCE: LEVELS OF SUCRASE ACTIVITY IN JEJUNAL MUCOSA. Arch Dis Child. 1964 Oct;39:431–443. doi: 10.1136/adc.39.207.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond J. H., Jr, Levitt M. D. Use of pulmonary hydrogen (H 2 ) measurements to quantitate carbohydrate absorption. Study of partially gastrectomized patients. J Clin Invest. 1972 May;51(5):1219–1225. doi: 10.1172/JCI106916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CROSBY W. H., KUGLER H. W. Intraluminal biopsy of the small intestine; the intestinal biopsy capsule. Am J Dig Dis. 1957 May;2(5):236–241. doi: 10.1007/BF02231100. [DOI] [PubMed] [Google Scholar]
  4. DOELL R. G., KRETCHMER N. Studies of small intestine during development. I. Distribution and activity of beta-galactosidase. Biochim Biophys Acta. 1962 Aug 13;62:353–362. doi: 10.1016/0006-3002(62)90097-5. [DOI] [PubMed] [Google Scholar]
  5. Dahlqvist A., Lindberg T. Development of the intestinal disaccharidase and alkaline phosphatase activities in the human foetus. Clin Sci. 1966 Jun;30(3):517–528. [PubMed] [Google Scholar]
  6. Holdsworth C. D., Dawson A. M. Glucose and fructose absorption in idiopathic steatorrhoea. Gut. 1965 Aug;6(4):387–391. doi: 10.1136/gut.6.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kohn P. G., Smyth D. H., Wright E. M. Effects of amino acids, dipeptides and disaccharides on the electric potential across rat small intestine. J Physiol. 1968 Jun;196(3):723–746. doi: 10.1113/jphysiol.1968.sp008533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levin R. J., Koldovský O., Hosková J., Jirsová V., Uher J. Electrical activity across human foetal small intestine associated with absorption processes. Gut. 1968 Apr;9(2):206–213. doi: 10.1136/gut.9.2.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McMichael H. B., Webb J., Dawson A. M. Jejunal disaccharidases and some observations on the cause of lactase deficiency. Br Med J. 1966 Oct 29;2(5521):1037–1041. doi: 10.1136/bmj.2.5521.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McMichael H. B., Webb J., Dawson A. M. The absorption of maltose and lactose in man. Clin Sci. 1967 Aug;33(1):135–145. [PubMed] [Google Scholar]
  11. Read N. W., Holdsworth C. D., Levin R. J. Electrical measurement of intestinal absorption of glucose in man. Lancet. 1974 Sep 14;2(7881):624–627. doi: 10.1016/s0140-6736(74)91946-1. [DOI] [PubMed] [Google Scholar]
  12. Read N. W., Levin R. J., Holdsworth C. D. Electrogenic glucose absorption in untreated and treated coeliac disease. Gut. 1976 Jun;17(6):444–449. doi: 10.1136/gut.17.6.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Read N. W., Smallwood R. H., Levin R. J., Holdsworth C. D., Brown B. H. Relationship between changes in intraluminal pressure and transmural potential difference in the human and canine jejunum in vivo. Gut. 1977 Feb;18(2):141–151. doi: 10.1136/gut.18.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sasaki Y., Iio M., Kameda H., Ueda H., Aoyagi T. Measurement of 14C-lactose absorption in the diagnosis of lactase deficiency. J Lab Clin Med. 1970 Nov;76(5):824–835. [PubMed] [Google Scholar]
  15. Zoppi G., Hadorn B., Gitzelmann R., Kistler H., Prader A. Intestinal beta-galactosidase activities in malabsorption syndromes. Gastroenterology. 1966 Apr;50(4):557–561. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES