Abstract
BALB/c mice develop myasthenic symptoms after immunization with rodent acetylcholine receptor (AChR). After immunization with Torpedo AChR (TAChR), their CD4+ cells become strongly sensitized against a conserved region of the TAChR alpha subunit sequence (residues alpha 304-322), and cross-react vigorously with the homologous sequences of mouse and human AChR, which are almost identical. Therefore AChR-specific potentially autoreactive CD4+ cells exist in this strain. We immunized BALB/c mice with the synthetic TAChR sequence alpha 304-322. The CD4+ cells thus sensitized responded to TAChR, indicating that they recognize an epitope(s) produced upon TAChR processing. They recognized peptide alpha 304-322 in association with the I-Ad molecule. Anti-alpha 304-322 CD4+ cells cross-reacted well with the corresponding murine and human synthetic sequences. To identify residues involved in formation of an autoimmune epitope(s), CD4+ cells from mice immunized with peptide alpha 304-322 were challenged in vitro with single residue glycine-substituted analogues of this sequence. Substitution of residue W311, and of any residue within the sequence alpha 313-319 (RKVFIDT), consistently and, in some cases, strongly affected the CD4+ cells response. Substitution of residues in the region alpha 311-319 had variable effects in different experiments, and in general affected moderately the CD4+ response. These results suggest that anti-alpha 304-322 CD4+ cells comprise several clones, recognizing overlapping epitopes which share residues alpha 311-319. The importance of the sequence region alpha 311-319 for formation of CD4+ cell epitope(s) was verified by testing CD4+ cells sensitized to T alpha 304-322 with analogues of this sequence, carrying non-conservative substitutions at positions Q310, K314 and D318. Substitution of Q310 had minimal or no effects, while those of K314 or D318 strongly affected the CD4+ cell response.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellone M., Ostlie N., Karachunski P., Manfredi A. A., Conti-Tronconi B. M. Cryptic epitopes on the nicotinic acetylcholine receptor are recognized by autoreactive CD4+ cells. J Immunol. 1993 Jul 15;151(2):1025–1038. [PubMed] [Google Scholar]
- Bellone M., Ostlie N., Lei S. J., Wu X. D., Conti-Tronconi B. M. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol. 1991 Sep 1;147(5):1484–1491. [PubMed] [Google Scholar]
- Bellone M., Ostlie N., Lei S., Conti-Tronconi B. M. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the alpha subunits of Torpedo californica and murine acetylcholine receptors. Eur J Immunol. 1991 Oct;21(10):2303–2310. doi: 10.1002/eji.1830211003. [DOI] [PubMed] [Google Scholar]
- Christadoss P., Lennon V. A., Krco C. J., Lambert E. H., David C. S. Genetic control of autoimmunity to acetylcholine receptors: role of Ia molecules. Ann N Y Acad Sci. 1981;377:258–277. doi: 10.1111/j.1749-6632.1981.tb33737.x. [DOI] [PubMed] [Google Scholar]
- Christadoss P., Lindstrom J. M., Melvold R. W., Talal N. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics. 1985;21(1):33–38. doi: 10.1007/BF00372239. [DOI] [PubMed] [Google Scholar]
- Christadoss P., Lindstrom J., Talal N. Cellular immune response to acetylcholine receptors in murine experimental autoimmune myasthenia gravis: inhibition with monoclonal anti-I-A antibodies. Cell Immunol. 1983 Oct 1;81(1):1–8. doi: 10.1016/0008-8749(83)90205-8. [DOI] [PubMed] [Google Scholar]
- Elliott J., Dunn S. M., Blanchard S. G., Raftery M. A. Specific binding of perhydrohistrionicotoxin to Torpedo acetylcholine receptor. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2576–2579. doi: 10.1073/pnas.76.6.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel A. G. Myasthenia gravis and myasthenic syndromes. Ann Neurol. 1984 Nov;16(5):519–534. doi: 10.1002/ana.410160502. [DOI] [PubMed] [Google Scholar]
- Feldmann M., June C. H., McMichael A., Maini R., Simpson E., Woody J. N. T-cell-targeted immunotherapy. Immunol Today. 1992 Mar;13(3):84–85. doi: 10.1016/0167-5699(92)90146-X. [DOI] [PubMed] [Google Scholar]
- Gammon G., Geysen H. M., Apple R. J., Pickett E., Palmer M., Ametani A., Sercarz E. E. T cell determinant structure: cores and determinant envelopes in three mouse major histocompatibility complex haplotypes. J Exp Med. 1991 Mar 1;173(3):609–617. doi: 10.1084/jem.173.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gammon G., Shastri N., Cogswell J., Wilbur S., Sadegh-Nasseri S., Krzych U., Miller A., Sercarz E. The choice of T-cell epitopes utilized on a protein antigen depends on multiple factors distant from, as well as at the determinant site. Immunol Rev. 1987 Aug;98:53–73. doi: 10.1111/j.1600-065x.1987.tb00519.x. [DOI] [PubMed] [Google Scholar]
- Granato D. A., Fulpius B. W., Moody J. F. Experimental myasthenia in Balb/c mice immunized with rat acetylcholine receptor from rat denervated muscle. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2872–2876. doi: 10.1073/pnas.73.8.2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Jaulin C., Casanova J. L., Romero P., Luescher I., Cordey A. S., Maryanski J. L., Kourilsky P. Highly diverse T cell recognition of a single Plasmodium berghei peptide presented by a series of mutant H-2Kd molecules. J Immunol. 1992 Dec 15;149(12):3990–3994. [PubMed] [Google Scholar]
- Jermy A., Beeson D., Vincent A. Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice. Eur J Immunol. 1993 Apr;23(4):973–976. doi: 10.1002/eji.1830230433. [DOI] [PubMed] [Google Scholar]
- Levinson A. I., Zweiman B., Lisak R. P. Immunopathogenesis and treatment of myasthenia gravis. J Clin Immunol. 1987 May;7(3):187–197. doi: 10.1007/BF00915723. [DOI] [PubMed] [Google Scholar]
- Lindstrom J., Shelton D., Fujii Y. Myasthenia gravis. Adv Immunol. 1988;42:233–284. doi: 10.1016/s0065-2776(08)60847-0. [DOI] [PubMed] [Google Scholar]
- Martin R., Utz U., Coligan J. E., Richert J. R., Flerlage M., Robinson E., Stone R., Biddison W. E., McFarlin D. E., McFarland H. F. Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87-106. J Immunol. 1992 Mar 1;148(5):1359–1366. [PubMed] [Google Scholar]
- Nanda N. K., Arzoo K. K., Sercarz E. E. In a small multideterminant peptide, each determinant is recognized by a different V beta gene segment. J Exp Med. 1992 Jul 1;176(1):297–302. doi: 10.1084/jem.176.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Protti M. P., Manfredi A. A., Straub C., Howard J. F., Jr, Conti-Tronconi B. M. Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7792–7796. doi: 10.1073/pnas.87.19.7792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
- Sette A., Buus S., Appella E., Smith J. A., Chesnut R., Miles C., Colon S. M., Grey H. M. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A. 1989 May;86(9):3296–3300. doi: 10.1073/pnas.86.9.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
