Skip to main content
Immunology logoLink to Immunology
. 1994 Nov;83(3):390–396.

Role of IL-2 and IL-4 in exacerbations of murine antigen-induced arthritis.

M J Jacobs 1, A E van den Hoek 1, P L van Lent 1, F A van de Loo 1, L B van de Putte 1, W B van den Berg 1
PMCID: PMC1415042  PMID: 7835964

Abstract

In this study the roles of different T-cell subsets, and produced cytokines, were investigated in an animal model for acute exacerbations. Flare-up reactions are inducible in the chronic phase of a smouldering antigen-induced inflammation by injection of a small amount of an antigen into a hyper-reactive knee joint. In vivo treatment with anti-CD4 monoclonal antibodies (mAb) almost totally blocked the flare reaction, whereas anti-CD8 treatment did not exert any effect. The role of T-helper 1 (Th1) cells in delayed-type hypersensitivity-resembling diseases is generally entitled proinflammatory, whereas Th2 cells act in an anti-inflammatory manner. To investigate the role of these T-cell subsets in flare-up reactions, anti-interleukin-2 (IL-2) and anti-IL-4 mAb treatments were performed. Anti-IL-2 treatment partly blocked the flare reaction, and anti-IL-4 treatment, although the result was unexpected, blocked the flare more efficiently. Furthermore, when human recombinant IL-2 (hrIL-2) and murine recombinant IL-4 (mrIL-4) were co-injected with the antigen to test their ability respectively to potentiate or down-regulate the flare reaction, both cytokines demonstrated additional pro-inflammatory effects, although hrIL-2 was more potent than mrIL-4. The mere effect of hrIL-2 and mrIL-4 was studied by direct injection into a hyperreactive joint. No flare-up reaction or cell-influx could be induced, suggesting that other mediators are needed to exert pro-inflammatory effects of IL-2 or IL-4. We conclude that not only Th1 cells, but also Th2 lymphocytes (at least regarding IL-4 production) may play a pro-inflammatory role in flare-up reactions of chronic arthritis. Considering therapeutic application of Th2 cell-derived cytokines, one should be aware of the possible pro-inflammatory potential of IL-4.

Full text

PDF
390

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B., Wong H. L., Costa G. L., Bienkowski M. J., Wahl S. M. Suppression of monocyte function and differential regulation of IL-1 and IL-1ra by IL-4 contribute to resolution of experimental arthritis. J Immunol. 1993 Oct 15;151(8):4344–4351. [PubMed] [Google Scholar]
  2. Banerjee S., Webber C., Poole A. R. The induction of arthritis in mice by the cartilage proteoglycan aggrecan: roles of CD4+ and CD8+ T cells. Cell Immunol. 1992 Oct 15;144(2):347–357. doi: 10.1016/0008-8749(92)90250-s. [DOI] [PubMed] [Google Scholar]
  3. Ben-Sasson S. Z., Le Gros G., Conrad D. H., Finkelman F. D., Paul W. E. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1421–1425. doi: 10.1073/pnas.87.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheever A. W., Finkelman F. D., Caspar P., Heiny S., Macedonia J. G., Sher A. Treatment with anti-IL-2 antibodies reduces hepatic pathology and eosinophilia in Schistosoma mansoni-infected mice while selectively inhibiting T cell IL-5 production. J Immunol. 1992 May 15;148(10):3244–3248. [PubMed] [Google Scholar]
  5. Connolly K., Roubinian J. R., Wofsy D. Development of murine lupus in CD4-depleted NZB/NZW mice. Sustained inhibition of residual CD4+ T cells is required to suppress autoimmunity. J Immunol. 1992 Nov 1;149(9):3083–3088. [PubMed] [Google Scholar]
  6. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  7. Fanslow W. C., Clifford K. N., Park L. S., Rubin A. S., Voice R. F., Beckmann M. P., Widmer M. B. Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol. 1991 Jul 15;147(2):535–540. [PubMed] [Google Scholar]
  8. Fiorentino D. F., Bond M. W., Mosmann T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989 Dec 1;170(6):2081–2095. doi: 10.1084/jem.170.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghadirian E., Denis M. Murine hypersensitivity pneumonitis: interleukin-4 administration partially abrogates the disease process. Microb Pathog. 1992 May;12(5):377–382. doi: 10.1016/0882-4010(92)90100-3. [DOI] [PubMed] [Google Scholar]
  10. Graham B. S., Bunton L. A., Wright P. F., Karzon D. T. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest. 1991 Sep;88(3):1026–1033. doi: 10.1172/JCI115362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendricks R. L., Tumpey T. M., Finnegan A. IFN-gamma and IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice. J Immunol. 1992 Nov 1;149(9):3023–3028. [PubMed] [Google Scholar]
  12. Hiester A. A., Metcalf D. R., Campbell P. A. Interleukin-4 is chemotactic for mouse macrophages. Cell Immunol. 1992 Jan;139(1):72–80. doi: 10.1016/0008-8749(92)90100-4. [DOI] [PubMed] [Google Scholar]
  13. Howard M., O'Garra A., Ishida H., de Waal Malefyt R., de Vries J. Biological properties of interleukin 10. J Clin Immunol. 1992 Jul;12(4):239–247. doi: 10.1007/BF00918147. [DOI] [PubMed] [Google Scholar]
  14. Hutchings P. R., Cooke A., Dawe K., Waldmann H., Roitt I. M. Active suppression induced by anti-CD4. Eur J Immunol. 1993 Apr;23(4):965–968. doi: 10.1002/eji.1830230431. [DOI] [PubMed] [Google Scholar]
  15. Jacobs M. J., van den Hoek A. E., van de Putte L. B., van den Berg W. B. Anergy of antigen-specific T lymphocytes is a potent mechanism of intravenously induced tolerance. Immunology. 1994 Jun;82(2):294–300. [PMC free article] [PubMed] [Google Scholar]
  16. Jacobs M. J., van den Hoek A. E., van de Putte L. B., van den Berg W. B. Suppression of hen egg lysozyme-induced arthritis by intravenous antigen administration: no role in this for antigen-driven bystander suppression. Clin Exp Immunol. 1994 Apr;96(1):36–42. doi: 10.1111/j.1365-2249.1994.tb06226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khoury S. J., Hancock W. W., Weiner H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med. 1992 Nov 1;176(5):1355–1364. doi: 10.1084/jem.176.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kruijsen M. W., van den Berg W. B., van de Putte L. B., van den Broek W. J. Detection and quantification of experimental joint inflammation in mice by measurement of 99mTc-pertechnetate uptake. Agents Actions. 1981 Dec;11(6-7):640–642. doi: 10.1007/BF01978775. [DOI] [PubMed] [Google Scholar]
  19. Lens J. W., van den Berg W. B., van de Putte L. B., Berden J. H., Lems S. P. Flare-up of antigen-induced arthritis in mice after challenge with intravenous antigen: effects of pre-treatment with cobra venom factor and anti-lymphocyte serum. Clin Exp Immunol. 1984 Sep;57(3):520–528. [PMC free article] [PubMed] [Google Scholar]
  20. Lens J. W., van den Berg W. B., van de Putte L. B. Flare-up of antigen-induced arthritis in mice after challenge with intravenous antigen: studies on the characteristics of and mechanisms involved in the reaction. Clin Exp Immunol. 1984 Feb;55(2):287–294. [PMC free article] [PubMed] [Google Scholar]
  21. Lens J. W., van den Berg W. B., van de Putte L. B., Zwarts W. A. Flare of antigen-induced arthritis in mice after intravenous challenge. Kinetics of antigen in the circulation and localization of antigen in the arthritic and noninflamed joint. Arthritis Rheum. 1986 May;29(5):665–674. doi: 10.1002/art.1780290512. [DOI] [PubMed] [Google Scholar]
  22. Lens J. W., van den Berg W. B., van de Putte L. B., van den Bersselaar L. Flare-up of antigen-induced arthritis in mice after challenge with oral antigen. Clin Exp Immunol. 1984 Nov;58(2):364–371. [PMC free article] [PubMed] [Google Scholar]
  23. Levi-Schaffer F., Segal V., Shalit M. Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts. Immunology. 1991 Feb;72(2):174–180. [PMC free article] [PubMed] [Google Scholar]
  24. Lider O., Santos L. M., Lee C. S., Higgins P. J., Weiner H. L. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J Immunol. 1989 Feb 1;142(3):748–752. [PubMed] [Google Scholar]
  25. Lorré K., Van Damme J., Ceuppens J. L. A bidirectional regulatory network involving IL 2 and IL 4 in the alternative CD2 pathway of T cell activation. Eur J Immunol. 1990 Jul;20(7):1569–1575. doi: 10.1002/eji.1830200724. [DOI] [PubMed] [Google Scholar]
  26. Masinovsky B., Urdal D., Gallatin W. M. IL-4 acts synergistically with IL-1 beta to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J Immunol. 1990 Nov 1;145(9):2886–2895. [PubMed] [Google Scholar]
  27. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  28. Murray H. W., Squires K. E., Miralles C. D., Stoeckle M. Y., Granger A. M., Granelli-Piperno A., Bogdan C. Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J Immunol. 1992 Mar 15;148(6):1858–1863. [PubMed] [Google Scholar]
  29. Müller K. M., Jaunin F., Masouyé I., Saurat J. H., Hauser C. Th2 cells mediate IL-4-dependent local tissue inflammation. J Immunol. 1993 Jun 15;150(12):5576–5584. [PubMed] [Google Scholar]
  30. Powrie F., Coffman R. L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today. 1993 Jun;14(6):270–274. doi: 10.1016/0167-5699(93)90044-L. [DOI] [PubMed] [Google Scholar]
  31. Ranges G. E., Fortin S., Barger M. T., Sriram S., Cooper S. M. In vivo modulation of murine collagen induced arthritis. Int Rev Immunol. 1988 Sep;4(1):83–90. doi: 10.3109/08830188809044772. [DOI] [PubMed] [Google Scholar]
  32. Röcken M., Müller K. M., Saurat J. H., Müller I., Louis J. A., Cerottini J. C., Hauser C. Central role for TCR/CD3 ligation in the differentiation of CD4+ T cells toward A Th1 or Th2 functional phenotype. J Immunol. 1992 Jan 1;148(1):47–54. [PubMed] [Google Scholar]
  33. Saoudi A., Kuhn J., Huygen K., de Kozak Y., Velu T., Goldman M., Druet P., Bellon B. TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol. 1993 Dec;23(12):3096–3103. doi: 10.1002/eji.1830231208. [DOI] [PubMed] [Google Scholar]
  34. Schleimer R. P., Sterbinsky S. A., Kaiser J., Bickel C. A., Klunk D. A., Tomioka K., Newman W., Luscinskas F. W., Gimbrone M. A., Jr, McIntyre B. W. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol. 1992 Feb 15;148(4):1086–1092. [PubMed] [Google Scholar]
  35. Seder R. A., Paul W. E., Ben-Sasson S. Z., LeGros G. S., Kagey-Sobotka A., Finkelman F. D., Pierce J. H., Plaut M. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int Arch Allergy Appl Immunol. 1991;94(1-4):137–140. doi: 10.1159/000235345. [DOI] [PubMed] [Google Scholar]
  36. Sedgwick J. D. Long-term depletion of CD8+ T cells in vivo in the rat: no observed role for CD8+ (cytotoxic/suppressor) cells in the immunoregulation of experimental allergic encephalomyelitis. Eur J Immunol. 1988 Apr;18(4):495–502. doi: 10.1002/eji.1830180402. [DOI] [PubMed] [Google Scholar]
  37. Tanaka T., Ben-Sasson S. Z., Paul W. E. IL-4 increases IL-2 production by T cells in response to accessory cell-independent stimuli. J Immunol. 1991 Jun 1;146(11):3831–3839. [PubMed] [Google Scholar]
  38. Tepper R. I., Levinson D. A., Stanger B. Z., Campos-Torres J., Abbas A. K., Leder P. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell. 1990 Aug 10;62(3):457–467. doi: 10.1016/0092-8674(90)90011-3. [DOI] [PubMed] [Google Scholar]
  39. Thornhill M. H., Wellicome S. M., Mahiouz D. L., Lanchbury J. S., Kyan-Aung U., Haskard D. O. Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol. 1991 Jan 15;146(2):592–598. [PubMed] [Google Scholar]
  40. Tiggelman A. M., Van Noorden C. J. Mast cells in early stages of antigen-induced arthritis in rat knee joints. Int J Exp Pathol. 1990 Aug;71(4):455–464. [PMC free article] [PubMed] [Google Scholar]
  41. Ungar B. L., Kao T. C., Burris J. A., Finkelman F. D. Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T lymphocytes in protective immunity. J Immunol. 1991 Aug 1;147(3):1014–1022. [PubMed] [Google Scholar]
  42. Waldor M. K., Sriram S., Hardy R., Herzenberg L. A., Herzenberg L. A., Lanier L., Lim M., Steinman L. Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science. 1985 Jan 25;227(4685):415–417. doi: 10.1126/science.3155574. [DOI] [PubMed] [Google Scholar]
  43. Wong H. L., Costa G. L., Lotze M. T., Wahl S. M. Interleukin (IL) 4 differentially regulates monocyte IL-1 family gene expression and synthesis in vitro and in vivo. J Exp Med. 1993 Mar 1;177(3):775–781. doi: 10.1084/jem.177.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van de Loo A. A., Arntz O. J., van den Berg W. B. Flare-up of experimental arthritis in mice with murine recombinant IL-1. Clin Exp Immunol. 1992 Feb;87(2):196–202. doi: 10.1111/j.1365-2249.1992.tb02974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van de Putte L. B., Lens J. W., van den Berg W. B., Kruijsen M. W. Exacerbation of antigen-induced arthritis after challenge with intravenous antigen. Immunology. 1983 May;49(1):161–167. [PMC free article] [PubMed] [Google Scholar]
  46. van den Berg W. B., Kruijsen M. W., van de Putte L. B., van Beusekom H. J., van der Sluis-van der Pol M., Zwarts W. A. Antigen-induced and zymosan-induced arthritis in mice: studies on in vivo cartilage proteoglycan synthesis and chondrocyte death. Br J Exp Pathol. 1981 Jun;62(3):308–316. [PMC free article] [PubMed] [Google Scholar]
  47. van den Broek M. F., van den Berg W. B., van de Putte L. B. Monoclonal anti-Ia antibodies suppress the flare up reaction of antigen induced arthritis in mice. Clin Exp Immunol. 1986 Nov;66(2):320–330. [PMC free article] [PubMed] [Google Scholar]
  48. van den Broek M. F., van den Berg W. B., van de Putte L. B. The role of mast cells in antigen induced arthritis in mice. J Rheumatol. 1988 Apr;15(4):544–551. [PubMed] [Google Scholar]
  49. van der Veen R. C., Stohlman S. A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J Neuroimmunol. 1993 Nov-Dec;48(2):213–220. doi: 10.1016/0165-5728(93)90194-4. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES