Skip to main content
Immunology logoLink to Immunology
. 1994 Dec;83(4):631–638.

Studies of protein A and herpes simplex virus-1 induced Fc gamma-binding specificities. Different binding patterns for IgG3 from Caucasian and Oriental subjects.

P J Johansson 1, T Ota 1, N Tsuchiya 1, C C Malone 1, R C Williams Jr 1
PMCID: PMC1415083  PMID: 7875743

Abstract

Herpes simplex virus type 1 (HSV-1) expresses a receptor that binds the Fc portion of IgG. This HSV-1 Fc gamma-binding protein is, like protein A of Staphylococcus aureus, known to bind human IgG1, IgG2 and IgG4 but not IgG3 subclasses. However, IgG3 with the allotype Gm(s+)(t+), prominent in the Oriental population, reacts with protein A. This prompted us to investigate the reactivity of Oriental IgG3 monoclonal myeloma proteins of various allotypes with the HSV-1 Fc gamma-binding protein. Of seven Oriental IgG3 myeloma proteins with allotypes Gm(s+)(t+)(u-)(b+)(g-), Gm(s-)(t-)(u+)(b+)(g-) and Gm(s-)(t-)(u+)(b-)(g+), all reacted with the HSV-1 Fc gamma-binding protein. This was in contrast to negative reactions obtained with three IgG3 myeloma proteins of Caucasian origin with Gm(b+)(g-) or Gm(b-)(g+) phenotypes. The same binding pattern, i.e. binding of IgG3 of Oriental but not of Caucasian origin, was found with protein A. The binding of the monoclonal Oriental IgG3 proteins was again independent of the G3m phenotype. These findings support the concept that the HSV-1 Fc gamma-binding protein A have a similar binding site on the IgG molecule. All monoclonal IgG3 proteins derived from Oriental subjects with or without histidine at position 435 bound to HSV Fc gamma-binding protein. This suggests that Oriental IgG3 myeloma proteins with Gm(s-)(t-) phenotypes have additional critical amino acid residue substitutions important for HSV Fc gamma binding different from those already known.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balbín M., Grubb A., de Lange G. G., Grubb R. DNA sequences specific for Caucasian G3m(b) and (g) allotypes: allotyping at the genomic level. Immunogenetics. 1994;39(3):187–193. doi: 10.1007/BF00241259. [DOI] [PubMed] [Google Scholar]
  2. Baucke R. B., Spear P. G. Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein. J Virol. 1979 Dec;32(3):779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton D. R. Immunoglobulin G: functional sites. Mol Immunol. 1985 Mar;22(3):161–206. doi: 10.1016/0161-5890(85)90151-8. [DOI] [PubMed] [Google Scholar]
  4. Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981 Apr 28;20(9):2361–2370. [PubMed] [Google Scholar]
  5. GRUBB R., LAURELL A. B. Hereditary serological human serum groups. Acta Pathol Microbiol Scand. 1956;39(6):390–398. doi: 10.1111/j.1699-0463.1956.tb05067.x. [DOI] [PubMed] [Google Scholar]
  6. Haake D. A., Franklin E. C., Frangione B. The modification of human immunoglobulin binding to staphylococcal protein A using diethylpyrocarbonate. J Immunol. 1982 Jul;129(1):190–192. [PubMed] [Google Scholar]
  7. Johansson P. J., Hallberg T., Oxelius V. A., Grubb A., Blomberg J. Human immunoglobulin class and subclass specificity of Fc receptors induced by herpes simplex virus type 1. J Virol. 1984 Jun;50(3):796–804. doi: 10.1128/jvi.50.3.796-804.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johansson P. J., Myhre E. B., Blomberg J. Specificity of Fc receptors induced by herpes simplex virus type 1: comparison of immunoglobulin G from different animal species. J Virol. 1985 Nov;56(2):489–494. doi: 10.1128/jvi.56.2.489-494.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johansson P. J., Schröder A. K., Nardella F. A., Mannik M., Christensen P. Interaction between herpes simplex type 1-induced Fc receptor and human and rabbit immunoglobulin G (IgG) domains. Immunology. 1986 Jun;58(2):251–255. [PMC free article] [PubMed] [Google Scholar]
  10. Johnson D. C., Feenstra V. Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol. 1987 Jul;61(7):2208–2216. doi: 10.1128/jvi.61.7.2208-2216.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol. 1988 Apr;62(4):1347–1354. doi: 10.1128/jvi.62.4.1347-1354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kronvall G., Williams R. C., Jr Differences in anti-protein A activity among IgG subgroups. J Immunol. 1969 Oct;103(4):828–833. [PubMed] [Google Scholar]
  13. Lancet D., Isenman D., Sjödahl J., Sjöquist J., Pecht I. Interactions between staphylococcal protein A and immunoglobulin domains. Biochem Biophys Res Commun. 1978 Nov 29;85(2):608–614. doi: 10.1016/0006-291x(78)91206-8. [DOI] [PubMed] [Google Scholar]
  14. Langone J. J. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv Immunol. 1982;32:157–252. [PubMed] [Google Scholar]
  15. Longnecker R., Chatterjee S., Whitley R. J., Roizman B. Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4303–4307. doi: 10.1073/pnas.84.12.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsumoto H., Ito S., Miyazaki T., Ohta T. Structural studies of a human gamma 3 myeloma protein (Jir) bearing the allotypic marker Gm(st). J Immunol. 1983 Oct;131(4):1865–1870. [PubMed] [Google Scholar]
  17. Myhre E. B., Kronvall G. Heterogeneity of nonimmune immunoglobulin Fc reactivity among gram-positive cocci: description of three major types of receptors for human immunoglobulin G. Infect Immun. 1977 Sep;17(3):475–482. doi: 10.1128/iai.17.3.475-482.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Para M. F., Baucke R. B., Spear P. G. Immunoglobulin G(Fc)-binding receptors on virions of herpes simplex virus type 1 and transfer of these receptors to the cell surface by infection. J Virol. 1980 May;34(2):512–520. doi: 10.1128/jvi.34.2.512-520.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Para M. F., Goldstein L., Spear P. G. Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J Virol. 1982 Jan;41(1):137–144. doi: 10.1128/jvi.41.1.137-144.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Recht B., Frangione B., Franklin E., van Loghem E. Structural studies of a human gamma 3 myeloma protein (Goe) that binds staph protein A. J Immunol. 1981 Sep;127(3):917–923. [PubMed] [Google Scholar]
  21. Shimizu A., Honzawa M., Ito S., Miyazaki T., Matsumoto H., Nakamura H., Michaelsen T. E., Arata Y. H NMR studies of the Fc region of human IgG1 and IgG3 immunoglobulins: assignment of histidine resonances in the CH3 domain and identification of IgG3 protein carrying G3m(st) allotypes. Mol Immunol. 1983 Feb;20(2):141–148. doi: 10.1016/0161-5890(83)90124-4. [DOI] [PubMed] [Google Scholar]
  22. Van Loghem E., Frangione B., Recht B., Franklin E. C. Staphylococcal protein A and human IgG subclasses and allotypes. Scand J Immunol. 1982 Mar;15(3):275–278. doi: 10.1111/j.1365-3083.1982.tb00649.x. [DOI] [PubMed] [Google Scholar]
  23. WATKINS J. F. ADSORPTION OF SENSITIZED SHEEP ERYTHROCYTES TO HELA CELLS INFECTED WITH HERPES SIMPLEX VIRUS. Nature. 1964 Jun 27;202:1364–1365. doi: 10.1038/2021364a0. [DOI] [PubMed] [Google Scholar]
  24. Wiger D., Michaelsen T. E. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor. Immunology. 1985 Mar;54(3):565–572. [PMC free article] [PubMed] [Google Scholar]
  25. Williams R. C., Jr, Malone C. C., Casali P. Heteroclitic polyclonal and monoclonal anti-Gm(a) and anti-Gm(g) human rheumatoid factors react with epitopes induced in Gm(a-), Gm(g-) IgG by interaction with antigen or by nonspecific aggregation. A possible mechanism for the in vivo generation of rheumatoid factors. J Immunol. 1992 Sep 1;149(5):1817–1824. [PMC free article] [PubMed] [Google Scholar]
  26. Williams R. C., Jr, Malone C. C., Solomon A. Conformational dependency of human IgG heavy chain-associated Gm allotypes. Mol Immunol. 1993 Mar;30(4):341–351. doi: 10.1016/0161-5890(93)90063-h. [DOI] [PubMed] [Google Scholar]
  27. van Loghem E. Allotypic markers. Monogr Allergy. 1986;19:40–51. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES