Skip to main content
Immunology logoLink to Immunology
. 1995 Feb;84(2):326–332.

Inhibition of protein kinase C results in a switch from a non-motile to a motile phenotype in diverse human lymphocyte populations.

C Southern 1, P C Wilkinson 1, K M Thorp 1, L K Henderson 1, M Nemec 1, N Matthews 1
PMCID: PMC1415096  PMID: 7751011

Abstract

Circulating lymphocytes are rounded, non-motile cells which on contact with cytokines, specialized or activated endothelium, acquire a constantly shape-changing, polarized morphology which enables migration into appropriate sites. The biochemical mechanisms which regulate this switch are not understood but the various stimuli may have a common final pathway. In this study we show that protein kinase C (PKC) inhibitors of the bisindolylmaleimide type (GF 109203X, Ro 31-8220, CGP 41,251) induce resting, spherical lymphocytes to change rapidly (< 30 min) into polarized, locomotory cells. This phenomenon was seen with diverse populations of blood T lymphocytes, tonsillar B cells and Jurkat and Molt4 T-cell lines. Consistent with this, down-regulation of PKC by chronic treatment (44 hr) with bryostatin also induced the polarized phenotype in blood lymphocytes and non-motile Molt4 cells. Conversely, treatment of a spontaneously motile subline of Molt4 cells with various PKC activators caused a reversion to the non-motile phenotype within minutes. PKC activation must be sufficient to overcome the effects of a constitutively active phosphatase because bisindolylmaleimide induction of motility could be prevented by pretreatment of the cells with a phosphatase inhibitor, calyculin A. It is concluded that, in resting lymphocytes, chronic activation of a PKC offsets the action of a constitutively active phosphatase and the net result is maintenance of the non-motile state. Agents which alter the kinase/phosphatase balance in favour of dephosphorylation result in induction of the locomotory phenotype.

Full text

PDF
326

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S., Lee J., Kozma R., Best A., Monfries C., Lim L. A novel functional target for tumor-promoting phorbol esters and lysophosphatidic acid. The p21rac-GTPase activating protein n-chimaerin. J Biol Chem. 1993 May 25;268(15):10709–10712. [PubMed] [Google Scholar]
  2. Arkhammar P., Juntti-Berggren L., Larsson O., Welsh M., Nånberg E., Sjöholm A., Köhler M., Berggren P. O. Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. J Biol Chem. 1994 Jan 28;269(4):2743–2749. [PubMed] [Google Scholar]
  3. Evans F. J., Parker P. J., Olivier A. R., Thomas S., Ryves W. J., Evans A. T., Gordge P., Sharma P. Phorbol ester activation of the isotypes of protein kinase C from bovine and rat brain. Biochem Soc Trans. 1991 Apr;19(2):397–402. doi: 10.1042/bst0190397. [DOI] [PubMed] [Google Scholar]
  4. Gordon J., Guy G., Walker L. Autocrine models of B-lymphocyte growth. I. Role of cell contact and soluble factors in T-independent B-cell responses. Immunology. 1985 Oct;56(2):329–335. [PMC free article] [PubMed] [Google Scholar]
  5. Harris H. The stimulation of lymphocyte motility by cultured high endothelial cells and its inhibition by pertussis toxin. Int Immunol. 1991 Jun;3(6):535–542. doi: 10.1093/intimm/3.6.535. [DOI] [PubMed] [Google Scholar]
  6. Haston W. S., Shields J. M. Contraction waves in lymphocyte locomotion. J Cell Sci. 1984 Jun;68:227–241. doi: 10.1242/jcs.68.1.227. [DOI] [PubMed] [Google Scholar]
  7. Haston W. S., Shields J. M., Wilkinson P. C. Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol. 1982 Mar;92(3):747–752. doi: 10.1083/jcb.92.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Isakov N., Galron D., Mustelin T., Pettit G. R., Altman A. Inhibition of phorbol ester-induced T cell proliferation by bryostatin is associated with rapid degradation of protein kinase C. J Immunol. 1993 Feb 15;150(4):1195–1204. [PubMed] [Google Scholar]
  9. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
  10. Kojima I., Kawamura N., Shibata H. Rate of calcium entry determines the rapid changes in protein kinase C activity in angiotensin II-stimulated adrenal glomerulosa cells. Biochem J. 1994 Feb 1;297(Pt 3):523–528. doi: 10.1042/bj2970523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kreienbühl P., Keller H., Niggli V. Protein phosphatase inhibitors okadaic acid and calyculin A alter cell shape and F-actin distribution and inhibit stimulus-dependent increases in cytoskeletal actin of human neutrophils. Blood. 1992 Dec 1;80(11):2911–2919. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J Biol Chem. 1993 May 5;268(13):9194–9197. [PubMed] [Google Scholar]
  14. Meyer T., Regenass U., Fabbro D., Alteri E., Rösel J., Müller M., Caravatti G., Matter A. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer. 1989 May 15;43(5):851–856. doi: 10.1002/ijc.2910430519. [DOI] [PubMed] [Google Scholar]
  15. Newman I., Wilkinson P. C. Locomotor responses of human CD45 lymphocyte subsets: preferential locomotion of CD45RO+ lymphocytes in response to attractants and mitogens. Immunology. 1993 Jan;78(1):92–98. [PMC free article] [PubMed] [Google Scholar]
  16. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  17. Parrott D. M., Wilkinson P. C. Lymphocyte locomotion and migration. Prog Allergy. 1981;28:193–284. [PubMed] [Google Scholar]
  18. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  19. Stossel T. P. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989 Nov 5;264(31):18261–18264. [PubMed] [Google Scholar]
  20. Thorp K. M., Southern C., Matthews N. Effect of serine/threonine kinase inhibitors on motility of human lymphocytes and U937 cells. Immunology. 1994 Apr;81(4):546–550. [PMC free article] [PubMed] [Google Scholar]
  21. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  22. Tsutsumi A., Kubo M., Fujii H., Freire-Moar J., Turck C. W., Ransom J. T. Regulation of protein kinase C isoform proteins in phorbol ester-stimulated Jurkat T lymphoma cells. J Immunol. 1993 Mar 1;150(5):1746–1754. [PubMed] [Google Scholar]
  23. Verschueren H., De Baetselier P., Bereiter-Hahn J. Dynamic morphology of metastatic mouse T-lymphoma cells invading through monolayers of 10T1/2 cells. Cell Motil Cytoskeleton. 1991;20(3):203–214. doi: 10.1002/cm.970200304. [DOI] [PubMed] [Google Scholar]
  24. Wilkinson P. C., Lackie J. M., Haston W. S., Islam L. N. Effects of phorbol esters on shape and locomotion of human blood lymphocytes. J Cell Sci. 1988 Aug;90(Pt 4):645–655. doi: 10.1242/jcs.90.4.645. [DOI] [PubMed] [Google Scholar]
  25. Wilkinson P. C., Newman I. Chemoattractant activity of IL-2 for human lymphocytes: a requirement for the IL-2 receptor beta-chain. Immunology. 1994 May;82(1):134–139. [PMC free article] [PubMed] [Google Scholar]
  26. Wilkinson P. C. The locomotor capacity of human lymphocytes and its enhancement by cell growth. Immunology. 1986 Feb;57(2):281–289. [PMC free article] [PubMed] [Google Scholar]
  27. Wilkinson S. E., Parker P. J., Nixon J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J. 1993 Sep 1;294(Pt 2):335–337. doi: 10.1042/bj2940335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zimmermann A., Keller H. Effects of staurosporine, K 252a and other structurally related protein kinase inhibitors on shape and locomotion of Walker carcinosarcoma cells. Br J Cancer. 1992 Dec;66(6):1077–1082. doi: 10.1038/bjc.1992.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zimmermann A., Keller H. Shape changes and chemokinesis of Walker carcinosarcoma cells: effects of protein kinase inhibitors (HA-1004, polymyxin B, sangivamycin and tamoxifen) and an inhibitor of diacylglycerol kinase (R 59022). Anticancer Res. 1993 Mar-Apr;13(2):347–354. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES