Skip to main content
Immunology logoLink to Immunology
. 1995 Feb;84(2):254–264.

Adherence status regulates the primary cellular activation responses to the flavivirus West Nile.

J Shen 1, J M Devery 1, N J King 1
PMCID: PMC1415097  PMID: 7751002

Abstract

Increases in cell-surface intercellular adhesion molecule-1 (ICAM-1; CD54) and major histocompatibility complex antigen class I (MHC-I) and class II (MHC-II) expression during flavivirus infection of murine macrophages was strongly dependent on adherence status. CD54 and MHC expression was significantly increased during infection with the flavivirus West Nile (WNV) on adherent, but not on non-adherent, macrophages. In contrast, increased CD54 and MHC-I expression was induced by interferon-gamma (IFN-gamma) in both cultures but was significantly greater on adherent cells than non-adherent cells. Adherent status was also important in human embryonic fibroblasts (HEF), adherent cells of non-immune origin. Similar to macrophages, WNV induced increased CD54 or MHC-I expression on adherent but not non-adherent HEF. Again, induction of these antigens by IFN-gamma occurred in both cultures but was significantly greater on adherent cells than non-adherent cells. Macrophages or HEF that aggregated when cultured at high density under non-adherent conditions, responded to WNV and IFN-gamma in a manner similar to adherent cells. Unresponsive non-adherent cells infected with WNV or treated with IFN-gamma under non-adherent conditions for 24 or 48 hr recovered if transferred to adherent culture conditions for 24 or 48 hr. Moreover, these cells expressed significantly higher cell-surface CD54 and MHC-I concentrations, compared to similarly treated HEF cultured under adherent conditions during the entire culture period. WNV infection also induced significant nitric oxide production in macrophages, and adherence status was similarly important in this response, with adherent cells producing higher amounts of nitrite/nitrate than non-adherent cells. These results suggest that adherent status may be critical for effective antiviral immune responses involving macrophages.

Full text

PDF
254

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argall K. G., Armati P. J., King N. J., Douglas M. W. The effects of West Nile virus on major histocompatibility complex class I and II molecule expression by Lewis rat Schwann cells in vitro. J Neuroimmunol. 1991 Dec;35(1-3):273–284. doi: 10.1016/0165-5728(91)90181-6. [DOI] [PubMed] [Google Scholar]
  2. Balcar V. J., Shen J., Bao S., King N. J. Na(+)-dependent high affinity uptake of L-glutamate in primary cultures of human fibroblasts isolated from three different types of tissue. FEBS Lett. 1994 Feb 14;339(1-2):50–54. doi: 10.1016/0014-5793(94)80382-x. [DOI] [PubMed] [Google Scholar]
  3. Bao S., King N. J., Dos Remedios C. G. Flavivirus induces MHC antigen on human myoblasts: a model of autoimmune myositis? Muscle Nerve. 1992 Nov;15(11):1271–1277. doi: 10.1002/mus.880151109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bao S., dos Remedios C. G., King N. J. Ontogeny of major histocompatibility complex antigen expression on cultured human embryonic skeletal myoblasts. Transplantation. 1994 Sep 15;58(5):585–591. doi: 10.1097/00007890-199409150-00010. [DOI] [PubMed] [Google Scholar]
  5. Bohnsack J. F., Kleinman H. K., Takahashi T., O'Shea J. J., Brown E. J. Connective tissue proteins and phagocytic cell function. Laminin enhances complement and Fc-mediated phagocytosis by cultured human macrophages. J Exp Med. 1985 May 1;161(5):912–923. doi: 10.1084/jem.161.5.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ding A., Nathan C. F., Graycar J., Derynck R., Stuehr D. J., Srimal S. Macrophage deactivating factor and transforming growth factors-beta 1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma. J Immunol. 1990 Aug 1;145(3):940–944. [PubMed] [Google Scholar]
  7. Douglas M. W., Kesson A. M., King N. J. CTL recognition of west Nile virus-infected fibroblasts is cell cycle dependent and is associated with virus-induced increases in class I MHC antigen expression. Immunology. 1994 Aug;82(4):561–570. [PMC free article] [PubMed] [Google Scholar]
  8. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  9. Eierman D. F., Johnson C. E., Haskill J. S. Human monocyte inflammatory mediator gene expression is selectively regulated by adherence substrates. J Immunol. 1989 Mar 15;142(6):1970–1976. [PubMed] [Google Scholar]
  10. Fast D. J., Lynch R. C., Leu R. W. Interferon-gamma, but not interferon-alpha beta, synergizes with tumor necrosis factor-alpha and lipid A in the induction of nitric oxide production by murine L929 cells. J Interferon Res. 1993 Aug;13(4):271–277. doi: 10.1089/jir.1993.13.271. [DOI] [PubMed] [Google Scholar]
  11. Friedman A., Beller D. I. The effect of adherence on the in vitro induction of cytocidal activity by macrophages. Immunology. 1987 Aug;61(4):469–474. [PMC free article] [PubMed] [Google Scholar]
  12. Fuhlbrigge R. C., Chaplin D. D., Kiely J. M., Unanue E. R. Regulation of interleukin 1 gene expression by adherence and lipopolysaccharide. J Immunol. 1987 Jun 1;138(11):3799–3802. [PubMed] [Google Scholar]
  13. Haskill S., Johnson C., Eierman D., Becker S., Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol. 1988 Mar 1;140(5):1690–1694. [PubMed] [Google Scholar]
  14. Henke A., Mohr C., Sprenger H., Graebner C., Stelzner A., Nain M., Gemsa D. Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL-1 beta, and IL-6 in human monocytes. J Immunol. 1992 Apr 1;148(7):2270–2277. [PubMed] [Google Scholar]
  15. Jacoby R. O., Bhatt P. N., Schwartz A. Protection of mice from lethal flaviviral encephalitis by adoptive transfer of splenic cells from donors infected with live virus. J Infect Dis. 1980 May;141(5):617–624. doi: 10.1093/infdis/141.5.617. [DOI] [PubMed] [Google Scholar]
  16. Jiang Y., Beller D. I., Frendl G., Graves D. T. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol. 1992 Apr 15;148(8):2423–2428. [PubMed] [Google Scholar]
  17. Karupiah G., Xie Q. W., Buller R. M., Nathan C., Duarte C., MacMicking J. D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993 Sep 10;261(5127):1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  18. Kesson A. M., Blanden R. V., Mullbacher A. The primary in vivo murine cytotoxic T cell response to the flavivirus, West Nile. J Gen Virol. 1987 Jul;68(Pt 7):2001–2006. doi: 10.1099/0022-1317-68-7-2001. [DOI] [PubMed] [Google Scholar]
  19. Kilbourn R. G., Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst. 1990 May 2;82(9):772–776. doi: 10.1093/jnci/82.9.772. [DOI] [PubMed] [Google Scholar]
  20. King N. J., Delikatny E. J., Holmes K. T. 1H magnetic resonance spectroscopy of primary human and murine cells of the myeloid lineage. Immunomethods. 1994 Apr;4(2):188–198. doi: 10.1006/immu.1994.1019. [DOI] [PubMed] [Google Scholar]
  21. King N. J., Kesson A. M. Interferon-independent increases in class I major histocompatibility complex antigen expression follow flavivirus infection. J Gen Virol. 1988 Oct;69(Pt 10):2535–2543. doi: 10.1099/0022-1317-69-10-2535. [DOI] [PubMed] [Google Scholar]
  22. King N. J., Mullbacher A., Tian L., Rodger J. C., Lidbury B., Hla R. T. West Nile virus infection induces susceptibility of in vitro outgrown murine blastocysts to specific lysis by paternally directed allo-immune and virus-immune cytotoxic T cells. J Reprod Immunol. 1993 Mar;23(2):131–144. doi: 10.1016/0165-0378(93)90003-z. [DOI] [PubMed] [Google Scholar]
  23. King N. J., Parr E. L. Quantitation of H-2 antigen expression on hepatocytes and macrophages: evidence for an influence by strain background. Aust J Exp Biol Med Sci. 1982 Dec;60(6):655–661. doi: 10.1038/icb.1982.67. [DOI] [PubMed] [Google Scholar]
  24. King N. J., Sinickas V. G., Blanden R. V. H-2K and H-2D antigens are independently regulated in mouse embryo fibroblasts. Exp Clin Immunogenet. 1985;2(4):206–214. [PubMed] [Google Scholar]
  25. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liew F. Y., Li Y., Severn A., Millott S., Schmidt J., Salter M., Moncada S. A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Immunol. 1991 Oct;21(10):2489–2494. doi: 10.1002/eji.1830211027. [DOI] [PubMed] [Google Scholar]
  27. Liu Y., King N., Kesson A., Blanden R. V., Müllbacher A. Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. J Neuroimmunol. 1989 Feb;21(2-3):157–168. doi: 10.1016/0165-5728(89)90171-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Merrill W. W., Naegel G. P., Matthay R. A., Reynolds H. Y. Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and partial characterization. J Clin Invest. 1980 Feb;65(2):268–276. doi: 10.1172/JCI109668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rojas A., Delgado R., Glaría L., Palacios M. Monocyte chemotactic protein-1 inhibits the induction of nitric oxide synthase in J774 cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):274–279. doi: 10.1006/bbrc.1993.2245. [DOI] [PubMed] [Google Scholar]
  30. Sporn S. A., Eierman D. F., Johnson C. E., Morris J., Martin G., Ladner M., Haskill S. Monocyte adherence results in selective induction of novel genes sharing homology with mediators of inflammation and tissue repair. J Immunol. 1990 Jun 1;144(11):4434–4441. [PubMed] [Google Scholar]
  31. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  32. Standiford T. J., Kunkel S. L., Kasahara K., Milia M. J., Rolfe M. W., Strieter R. M. Interleukin-8 gene expression from human alveolar macrophages: the role of adherence. Am J Respir Cell Mol Biol. 1991 Dec;5(6):579–585. doi: 10.1165/ajrcmb/5.6.579. [DOI] [PubMed] [Google Scholar]
  33. Stuehr D. J., Gross S. S., Sakuma I., Levi R., Nathan C. F. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989 Mar 1;169(3):1011–1020. doi: 10.1084/jem.169.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  35. Suschek C., Rothe H., Fehsel K., Enczmann J., Kolb-Bachofen V. Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. IL-1 beta-mediated induction regulated by tumor necrosis factor-alpha and IFN-gamma. J Immunol. 1993 Sep 15;151(6):3283–3291. [PubMed] [Google Scholar]
  36. Taylor W. P., Marshall I. D. Adaptation studies with Ross River virus: laboratory mice and cell cultures. J Gen Virol. 1975 Jul;28(1):59–72. doi: 10.1099/0022-1317-28-1-59. [DOI] [PubMed] [Google Scholar]
  37. Vartanian T., Szuchet S., Dawson G., Campagnoni A. T. Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein. Science. 1986 Dec 12;234(4782):1395–1398. doi: 10.1126/science.2431483. [DOI] [PubMed] [Google Scholar]
  38. Yurochko A. D., Pyle R. H., Elgert K. D. Changes in macrophage populations: phenotypic differences between normal and tumor-bearing host macrophages. Immunobiology. 1989 Feb;178(4-5):416–435. doi: 10.1016/s0171-2985(89)80063-4. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES