Skip to main content
Immunology logoLink to Immunology
. 1995 Feb;84(2):322–325.

L-rhamnose inhibits proliferation of murine splenocytes by the lipopolysaccharide and polysaccharide moiety of Shigella dysenteriae type 1 lipopolysaccharide.

T Biswas 1, S Roy 1, K K Banerjee 1
PMCID: PMC1415105  PMID: 7751010

Abstract

The induction of proliferation of murine splenocytes by lipopolysaccharide (LPS) of Shigella dysenteriae type 1 and its polysaccharide (PS) and lipid A fractions was investigated. The LPS-induced proliferation reached a maximum at a concentration of 30 ng/ml. The PS and lipid A induced proliferation of murine splenocytes at similar concentrations. Preincubation of murine splenocytes with varying concentrations of L-rhamnose blocked LPS- and PS-induced proliferation in a dose-dependent manner. The lipid A-induced stimulation, on the contrary, was not affected by preincubation of the cells with L-rhamnose. These data suggest that activation of splenocytes by LPS and PS is mechanistically different from that induced by lipid A and is presumably involved in the specific recognition of carbohydrate structures on LPS and PS.

Full text

PDF
322

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson J., Melchers F., Galanos C., Lüderitz O. The mitogenic effect of lipopolysaccharide on bone marrow-derived mouse lymphocytes. Lipid A as the mitogenic part of the molecule. J Exp Med. 1973 Apr 1;137(4):943–953. doi: 10.1084/jem.137.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. J., Hraba T., Taylor C. E., Myers K. R., Takayama K., Qureshi N., Stuetz P., Kusumoto S., Hasegawa A. Structural features that influence the ability of lipid A and its analogs to abolish expression of suppressor T cell activity. Infect Immun. 1992 Jul;60(7):2694–2701. doi: 10.1128/iai.60.7.2694-2701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chattopadhyay U., Das S., Guha S., Ghosal S. Activation of lymphocytes of normal and tumor bearing mice by mangiferin, a naturally occurring glucosylxanthone. Cancer Lett. 1987 Nov;37(3):293–299. doi: 10.1016/0304-3835(87)90114-5. [DOI] [PubMed] [Google Scholar]
  4. Galanos C., Rietschel E. T., Lüderitz O., Westphal O. Interaction of lipopolysaccharides and lipid A with complement. Eur J Biochem. 1971 Mar 1;19(1):143–152. doi: 10.1111/j.1432-1033.1971.tb01298.x. [DOI] [PubMed] [Google Scholar]
  5. Halling J. L., Hamill D. R., Lei M. G., Morrison D. C. Identification and characterization of lipopolysaccharide-binding proteins on human peripheral blood cell populations. Infect Immun. 1992 Mar;60(3):845–852. doi: 10.1128/iai.60.3.845-852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirikae T., Kirikae F., Schade F. U., Yoshida M., Kondo S., Hisatsune K., Nishikawa S., Rietschel E. T. Detection of lipopolysaccharide-binding proteins on membranes of murine lymphocyte and macrophage-like cell lines. FEMS Microbiol Immunol. 1991 Nov;3(6):327–336. doi: 10.1111/j.1574-6968.1991.tb04257.x. [DOI] [PubMed] [Google Scholar]
  7. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol. 1988 Aug 1;141(3):996–1005. [PubMed] [Google Scholar]
  8. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  9. Morrison D. C., Ryan J. L. Bacterial endotoxins and host immune responses. Adv Immunol. 1979;28:293–450. doi: 10.1016/s0065-2776(08)60802-0. [DOI] [PubMed] [Google Scholar]
  10. Patterson M. K., Jr Measurement of growth and viability of cells in culture. Methods Enzymol. 1979;58:141–152. doi: 10.1016/s0076-6879(79)58132-4. [DOI] [PubMed] [Google Scholar]
  11. Raetz C. R. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol. 1993 Sep;175(18):5745–5753. doi: 10.1128/jb.175.18.5745-5753.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Richards J. C., Leitch R. A. Elucidation of the structure of the Pasteurella haemolytica serotype T10 lipopolysaccharide O-antigen by n.m.r. spectroscopy. Carbohydr Res. 1989 Mar 15;186(2):275–286. doi: 10.1016/0008-6215(89)84041-8. [DOI] [PubMed] [Google Scholar]
  13. Sveen K., Hofstad T. Blastogenesis and polyclonal immunoglobulin synthesis in murine spleen cells stimulated with lipopolysaccharide, lipid A and acid-degraded polysaccharide from Fusobacterium nucleatum. FEMS Microbiol Immunol. 1990 May;2(1):29–33. doi: 10.1111/j.1574-6968.1990.tb03475.x. [DOI] [PubMed] [Google Scholar]
  14. Takada H., Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit Rev Microbiol. 1989;16(6):477–523. doi: 10.3109/10408418909104475. [DOI] [PubMed] [Google Scholar]
  15. Takeuchi Y., Nikaido H. Persistence of segregated phospholipid domains in phospholipid--lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry. 1981 Feb 3;20(3):523–529. doi: 10.1021/bi00506a013. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES